Artificial intelligence-based prediction of lycopene content in raw tomatoes using physicochemical attributes

被引:3
|
作者
Sharma, Arun [1 ,2 ,3 ]
Tiwari, Akshat Dutt [3 ]
Kumari, Monika [3 ]
Kumar, Nishant [3 ]
Saxena, Vikas [3 ]
Kumar, Ritesh [1 ,2 ]
机构
[1] Council Sci & Ind Res Cent Sci Instruments Org CS, Sect 30, Chandigarh, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad, India
[3] Natl Inst Food Technol Entrepreneurship & Managem, Sonipat, India
关键词
artificial intelligence; linear multivariate regression; lycopene content; partial least squares regression; post-harvest quality; principal component regression; tomato fruit; MATURITY STAGES; SOLUBLE SOLIDS; QUALITY; FRESH; FRUIT; CAROTENOIDS; PARAMETERS; STORAGE; HEALTH; FOODS;
D O I
10.1002/pca.3185
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Introduction Lycopene consumption reduces risk and incidence of cancer and cardiovascular diseases. Tomatoes are a rich source of phytochemical compounds including lycopene as a major constituent. Lycopene estimation using high-performance liquid chromatography is time-consuming and expensive. Objective To develop artificial intelligence models for prediction of lycopene in raw tomatoes using 14 different physicochemical parameters including salinity, total dissolved solids (TDS), electrical conductivity (EC), firmness, pH, total soluble solids (TSS), titratable acidity (TA), colour values on Hunter scale (L, a, b), total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (AOA). Material and methods The post-harvest data acquisition was collected through investigation for more than 100 raw tomatoes stored for 15 days. Linear multivariate regression (LMVR), principal component regression (PCR) and partial least squares regression (PLSR) models were developed by splitting data set into train and test datasets. The training of models was performed using 10-fold cross validation (CV). Results Principal component analysis showed strong positive association between lycopene, colour value 'a', TPC, TFC and AOA. The R-2 (CV), root mean square error (RMSE) (CV) and RMSE (Test) for best LMVR model was observed to be at 0.70, 8.48 and 9.69 respectively. The PCR model revealed R-2 (CV) at 0.59, RMSE (CV) at 8.91 and RMSE (Test) at 10.17 while PLSR model revealed R-2 (CV) at 0.60, RMSE (CV) at 9.10 and RMSE (Test) at 10.11. Conclusion Results of the present study show that epidemiological studies suggest fully ripened tomatoes are most beneficial for consumption to ensure recommended daily intake of lycopene content.
引用
收藏
页码:729 / 744
页数:16
相关论文
共 50 条
  • [1] Artificial intelligence-based nodal metastasis prediction
    Ahmed, F. S.
    Irfan, F. B.
    ANNALS OF ONCOLOGY, 2021, 32 : S1250 - S1251
  • [2] Prediction of the Energy Demand of a Hotel Using an Artificial Intelligence-Based Model
    Casteleiro-Roca, Jose-Luis
    Francisco Gomez-Gonzalez, Jose
    Luis Calvo-Rolle, Jose
    Jove, Esteban
    Quintian, Hector
    Acosta Martin, Juan Francisco
    Gonzalez Perez, Sara
    Gonzalez Diaz, Benjamin
    Calero-Garcia, Francisco
    Albino Mendez-Perez, Juan
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 586 - 596
  • [3] ARTIFICIAL INTELLIGENCE-BASED PREDICTION MODELS FOR ENVIRONMENTAL ENGINEERING
    Yetilmezsoy, Kaan
    Ozkaya, Bestamin
    Cakmakci, Mehmet
    NEURAL NETWORK WORLD, 2011, 21 (03) : 193 - 218
  • [4] Artificial intelligence-based fault prediction framework for WBAN
    Awad, Mamoun
    Sallabi, Farag
    Shuaib, Khaled
    Naeem, Faisal
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 7126 - 7137
  • [5] Artificial Intelligence-Based Model For Drought Prediction and Forecasting
    Kaur, Amandeep
    Sood, Sandeep K.
    COMPUTER JOURNAL, 2020, 63 (11): : 1704 - 1712
  • [6] Artificial Intelligence-Based Model for Drought Prediction and Forecasting
    Kaur, Amandeep
    Sood, Sandeep K
    Computer Journal, 2020, 63 (11): : 1704 - 1712
  • [7] Progress in Artificial Intelligence-based Prediction of Concrete Performance
    Hu, Xiangxin
    Li, Bixiong
    Mo, Yelan
    Alselwi, Othman
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2021, 19 (08) : 924 - 936
  • [8] Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS
    Mohammed, Khabat Star
    Shabanlou, Saeid
    Rajabi, Ahmad
    Yosefvand, Fariborz
    Izadbakhsh, Mohammad Ali
    APPLIED WATER SCIENCE, 2023, 13 (02)
  • [9] Artificial Intelligence-Based Prediction of Renewable Energy Sources Using Correlation Testing
    Li, Xianglong
    Zheng, Shangzhuo
    Wang, Weixian
    Zhang, Lu
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023,
  • [10] Prediction of adverse cardiovascular events in children using artificial intelligence-based electrocardiogram
    Nogimori, Yoshitsugu
    Sato, Kaname
    Takamizawa, Koichi
    Ogawa, Yosuke
    Tanaka, Yu
    Shiraga, Kazuhiro
    Masuda, Hitomi
    Matsui, Hikoro
    Kato, Motohiro
    Daimon, Masao
    Fujiu, Katsuhito
    Inuzuka, Ryo
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 406