Triangle-free graphs with large chromatic number and no induced wheel

被引:1
|
作者
Davies, James [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
Burling graphs; chromatic number; induced subgraph; wheels; INTERSECTION GRAPHS;
D O I
10.1002/jgt.22906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A wheel is a graph consisting of an induced cycle of length at least four and a single additional vertex with at least three neighbours on the cycle. We prove that no Burling graph contains an induced wheel. Burling graphs are triangle-free and have arbitrarily large chromatic number, so this answers a question of Trotignon and disproves a conjecture of Scott and Seymour.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 50 条
  • [1] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2017, 37 : 481 - 494
  • [2] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [3] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    Discrete & Computational Geometry, 2013, 50 : 714 - 726
  • [4] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [5] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 714 - 726
  • [6] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    Combinatorica, 2002, 22 : 591 - 596
  • [7] A counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number
    Carbonero, Alvaro
    Hompe, Patrick
    Moore, Benjamin
    Spirkl, Sophie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 63 - 69
  • [8] Triangle-free intersection graphs of line segments with large chromatic number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 6 - 10
  • [9] Triangle-free graphs with large chromatic numbers
    Nilli, A
    DISCRETE MATHEMATICS, 2000, 211 (1-3) : 261 - 262
  • [10] The fractional chromatic number of triangle-free graphs with Δ ≤ 3
    Lu, Linyuan
    Peng, Xing
    DISCRETE MATHEMATICS, 2012, 312 (24) : 3502 - 3516