Interlayer Confined Water Enabled Pseudocapacitive Sodium-Ion Storage in Nonaqueous Electrolyte

被引:14
|
作者
Wang, Binhao [1 ]
Fang, Ziyi [1 ]
Jiang, Qinyao [1 ]
Tang, Dafu [1 ]
Fan, Sicheng [1 ]
Huang, Xiaojuan [1 ]
Li, Junbin [1 ]
Peng, Dong-Liang [1 ]
Wei, Qiulong [1 ]
机构
[1] Xiamen Univ, Coll Mat, Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Dept Mat Sci & Engn,Fujian Key Lab Surface & Inter, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
pseudocapacitance; sodium-ioncapacitor; interlayerconfinement; hybrid electrodes; high-rate performance; ELECTROCHROMIC PROPERTIES; RAMAN MICROSPECTROMETRY; VANADIUM PENTOXIDE; NA-ION; INTERCALATION; BATTERY; MECHANISMS; CARBON; FILMS;
D O I
10.1021/acsnano.3c09189
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical capacitors have faced the limitations of low energy density for decades, owing to the low capacity of electric double-layer capacitance (EDLC)-type positive electrodes. In this work, we reveal the functions of interlayer confined water in iron vanadate (FeV3O8.7<middle dot>nH(2)O) for sodium-ion storage in nonaqueous electrolyte. Using an electrochemical quartz crystal microbalance, in situ Raman, and ex situ X-ray diffraction and X-ray photoelectron spectroscopy, we demonstrate that both nonfaradaic (surficial EDLC) and faradaic (pseudocapacitance-dominated Na+ intercalation) processes are involved in the charge storages. The interlayer confined water is able to accelerate the fast Na+ intercalations and is highly stable (without the removal of water or co-intercalation of [Na-diglyme](+)) in the nonaqueous environment. Furthermore, coupling the pseudocapacitive FeV3O8.7<middle dot>nH(2)O with EDLC-type activated carbon (FeVO-AC) as the positive electrode brings comprehensive enhancements, displaying the enlarged compaction density of similar to 2 times, specific capacity of similar to 1.5 times, and volumetric capacity of similar to 3 times compared to the AC electrode. Furthermore, the as-assembled hybrid sodium-ion capacitor, consisting of an FeVO-AC positive electrode and a mesocarbon microbeads negative electrode, shows a high energy density of 108 Wh kg(-1) at 108 W kg(-1) and 15.3 Wh kg(-1) at 8.3 kW kg(-1). Our results offer an emerging route for improving both specific and volumetric energy densities of electrochemical capacitors.
引用
收藏
页码:798 / 808
页数:11
相关论文
共 50 条
  • [1] Aqueous/Nonaqueous Hybrid Electrolyte for Sodium-Ion Batteries
    Zhang, Huang
    Qin, Bingsheng
    Han, Jin
    Passerini, Stefano
    ACS ENERGY LETTERS, 2018, 3 (07): : 1769 - +
  • [2] Niobium Carbide as a Promising Pseudocapacitive Sodium-Ion Storage Anode
    Wang, Shige
    Shao, Lianyi
    Yu, Lu
    Guan, Jieduo
    Shi, Xiaoyan
    Sun, Zhipeng
    Cai, Junjie
    Huang, Haitao
    Trukhanov, Alex
    ENERGY TECHNOLOGY, 2021, 9 (09)
  • [3] Evolution of a solid electrolyte interphase enabled by FeNX/C catalysts for sodium-ion storage
    Xia, Huicong
    Zan, Lingxing
    Qu, Gan
    Tu, Yunchuan
    Dong, Hongliang
    Wei, Yifan
    Zhu, Kaixin
    Yu, Yue
    Hu, Yongfeng
    Deng, Dehui
    Zhang, Jianan
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) : 771 - 779
  • [4] Nano-Confined Electrolyte for Sustainable Sodium-Ion Batteries
    Fan, Yanpeng
    Chang, Zhi
    Wu, Zhonghan
    Feng, Yang
    Du, Xiaomeng
    Che, Meihong
    Tian, Jing
    Xie, Wei
    Zhang, Kai
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (23)
  • [5] Fresh MoO2 as a better electrode for pseudocapacitive sodium-ion storage
    Zhao, Xu
    Zhao, Yundong
    Yang, Ying
    Liu, Zihang
    Wang, Hong-En
    Sui, Jiehe
    Cai, Wei
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (18) : 14721 - 14724
  • [6] Ultra-Thin Hollow Carbon Nanospheres for Pseudocapacitive Sodium-Ion Storage
    Yun, Young Soo
    Cho, Se Youn
    Kim, Haegyeom
    Jin, Hyoung-Joon
    Kang, Kisuk
    CHEMELECTROCHEM, 2015, 2 (03): : 359 - 365
  • [7] Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors
    Ding, Chunxia
    Huang, Ting
    Tao, Yaping
    Tan, Deming
    Zhang, Yin
    Wang, Faxing
    Yu, Feng
    Xie, Qingji
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) : 21010 - 21017
  • [8] Effect of Vinylene Carbonate Electrolyte Additive on the Surface Chemistry and Pseudocapacitive Sodium-Ion Storage of TiO2 Nanosheet Anodes
    Ruben Maca, Rudi
    Etacheri, Vinodkumar
    BATTERIES-BASEL, 2021, 7 (01): : 1 - 21
  • [9] Defect and interlayer spacing engineering of vanadium selenide for boosting sodium-ion storage
    Feng, Wang
    Wen, Xia
    Peng, Yanan
    Song, Luying
    Li, Xiaohui
    Du, Ruofan
    Yang, Junbo
    Jiang, Yulin
    Li, Hui
    Sun, Hang
    Huang, Ling
    He, Jun
    Shi, Jianping
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (02) : 748 - 757
  • [10] Sodium-ion hybrid electrolyte battery for sustainable energy storage applications
    Senthilkumar, S. T.
    Abirami, Mari
    Kim, Junsoo
    Go, Wooseok
    Hwang, Soo Min
    Kim, Youngsik
    JOURNAL OF POWER SOURCES, 2017, 341 : 404 - 410