Branched nozzle oblique angle flow for initiated chemical vapor deposition

被引:2
|
作者
Welchert, Nicholas A. A. [1 ]
Swarup, Jay V. V. [1 ]
Gupta, Rohan S. S. [1 ]
Gupta, Malancha [1 ]
机构
[1] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, 925 Bloom Walk, Los Angeles, CA 90089 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2023年 / 41卷 / 03期
关键词
POLYMER THIN-FILMS; THICKNESS; ICVD; FABRICATION; ACRYLATES); GRADIENTS; CHEMISTRY; PAPER;
D O I
10.1116/6.0002349
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monomer precursor flow was introduced at an oblique angle to the substrate at two locations during the initiated chemical vapor deposition (iCVD) process using a branched nozzle inlet extension. The polymerization of methacrylic acid was systematically studied as a function of the nozzle length and the monomer flow rate. Our experimental data showed the evolution of two distinct symmetrical thickness profiles as the flow rate and nozzle length increased. The maximum thickness moved downstream along the axes of both nozzles as the flow rate and nozzle length increased. Computational models were used to study the effects of the nozzle length and the monomer flow rate on the velocity profile within the reactor. Increasing the monomer flow rate and the nozzle length resulted in increases in the velocity profile ranges and the movement of the location of the maximum velocity and local minimum velocity associated with the stagnation point. These velocity data provided insight for explaining the trends found in the experimental results. The data demonstrate the ability to use a branched nozzle inlet extension to control the location of polymer deposition during the iCVD process.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Oblique angle initiated chemical vapor deposition for patterning film growth
    Welchert, Nicholas A.
    Cheng, Christine
    Karandikar, Prathamesh
    Gupta, Malancha
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06):
  • [2] Initiated chemical vapor deposition of biopassivation coatings
    O'Shaughnessy, W. S.
    Edell, David J.
    Gleason, Karen K.
    THIN SOLID FILMS, 2008, 516 (05) : 684 - 686
  • [3] Smart surfaces by initiated chemical vapor deposition
    Coclite, Anna Maria
    SURFACE INNOVATIONS, 2013, 1 (01) : 6 - 14
  • [4] Enhanced step coverage by oblique angle physical vapor deposition
    Karabacak, T
    Lu, TM
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
  • [5] Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings
    Martin, Tyler P.
    Lau, Kenneth K. S.
    Chan, Kelvin
    Mao, Yu
    Gupta, Malancha
    O'Shaughnessy, Av. Shannan
    Gleason, Karen K.
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (22-23): : 9400 - 9405
  • [6] Initiated Chemical Vapor Deposition (iCVD) of Hydrogel Polymers
    Bose, R. K.
    Nejati, S.
    Lau, K. K. S.
    EUROCVD 17 / CVD 17, 2009, 25 (08): : 1229 - 1235
  • [7] Initiated chemical vapor deposition of thin Polymeric coatings
    Gupta, Malancha
    Gleason, Karen K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232 : 619 - 619
  • [8] Initiated chemical vapor deposition of poly(furfuryl methacrylate)
    Chen, Guohua
    Gupta, Malancha
    Chan, Kelvin
    Gleason, Karen K.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2007, 28 (23) : 2205 - 2209
  • [9] Initiated chemical vapor deposition of antimicrobial polymer coatings
    Martin, T. P.
    Kooi, S. E.
    Chang, S. H.
    Sedransk, K. L.
    Gleason, K. K.
    BIOMATERIALS, 2007, 28 (06) : 909 - 915
  • [10] Initiated chemical vapor deposition of trivinyltrimethylcyclotrisiloxane for biomaterial coatings
    O'Shaughnessy, W. Shannan
    Gao, Meiling
    Gleason, Karen K.
    LANGMUIR, 2006, 22 (16) : 7021 - 7026