DEEP BAYESIAN BLIND COLOR DECONVOLUTION OF HISTOLOGICAL IMAGES

被引:1
|
作者
Yang, Shuowen [1 ]
Perez-Bueno, Fernando [2 ,3 ]
Castro-Macias, Francisco M. [2 ,3 ]
Molina, Rafael [2 ]
Katsaggelos, Aggelos K. [4 ]
机构
[1] Xidian Univ, Sch Optoelect Engn, Xian, Peoples R China
[2] Univ Granada, Dept Ciencias Comp & Inteligencia Artificial, Granada, Spain
[3] Res Ctr Informat & Commun Technol CITIC UGR, Granada, Spain
[4] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL USA
关键词
Blind Color Deconvolution; Deep Variational Bayes; Stain Separation; Histological Images;
D O I
10.1109/ICIP49359.2023.10222193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Histological images are often tainted with two or more stains to reveal their underlying structures and conditions. Blind Color Deconvolution (BCD) techniques separate colors (stains) and structural information (concentrations), which is useful for the processing, data augmentation, and classification of such images. Classical BCD methods rely on a complicated optimization procedure that has to be carried out on each image independently, i.e., they are not amortized methods. In contrast, once they have been trained, deep neural networks can be used in a fast, amortized manner on unseen inputs. Unfortunately, the lack of large databases of ground truth color and concentrations has limited the development of deep models for BCD. In this work, we propose a deep variational Bayesian BCD neural network (BCD-Net) for stain separation and concentration estimation. BCD-Net is trained by maximizing the evidence lower bound of the observed images, which does not require the use of ground truth examples of stains and concentrations. Results obtained using two multicenter databases (Camelyon-17 and a stain separation benchmark) demonstrate the effectiveness of BCD-Net in the stain separation tasks, while drastically reducing the computation time compared to classical non-amortized methods.
引用
收藏
页码:710 / 714
页数:5
相关论文
共 50 条
  • [1] BCD-net: Stain separation of histological images using deep variational Bayesian blind color deconvolution
    Yang, Shuowen
    Perez-Bueno, Fernando
    Castro-Macias, Francisco M.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [2] Variational Bayesian Blind Color Deconvolution of Histopathological Images
    Hidalgo-Gavira, Natalia
    Mateos, Javier
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (01) : 2026 - 2036
  • [3] SUPER GAUSSIAN PRIORS FOR BLIND COLOR DECONVOLUTION OF HISTOLOGICAL IMAGES
    Perez-Bueno, Fernando
    Vega, Miguel
    Naranjo, Valery
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3010 - 3014
  • [4] Robust blind color deconvolution and blood detection on histological images using Bayesian K-SVD
    Perez-Bueno, Fernando
    Engan, Kjersti
    Molina, Rafael
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 156
  • [5] Blind color deconvolution, normalization, and classification of histological images using general super Gaussian priors and Bayesian inference
    Perez-Bueno, Fernando
    Vega, Miguel
    Sales, Maria A.
    Aneiros-Fernandez, Jose
    Naranjo, Valery
    Molina, Rafael
    Katsaggelos, Aggelos K.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 211
  • [6] BLIND COLOR DECONVOLUTION OF HISTOPATHOLOGICAL IMAGES USING A VARIATIONAL BAYESIAN APPROACH
    Hidalgo-Gavira, Natalia
    Mateos, Javier
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 983 - 987
  • [7] Fully Automatic Blind Color Deconvolution of Histological Images Using Super Gaussians
    Perez-Bueno, Fernando
    Vega, Miguel
    Naranjo, Valery
    Molina, Rafael
    Katsaggelos, Aggelos K.
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1254 - 1258
  • [8] Blind Color Decomposition of Histological Images
    Gavrilovic, Milan
    Azar, Jimmy C.
    Lindblad, Joakim
    Wahlby, Carolina
    Bengtsson, Ewert
    Busch, Christer
    Carlbom, Ingrid B.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) : 983 - 994
  • [9] A TV-based image processing framework for blind color deconvolution and classification of histological images
    Perez-Bueno, Fernando
    Lopez-Perez, Miguel
    Vega, Miguel
    Mateos, Javier
    Naranjo, Valery
    Molina, Rafael
    Katsaggelos, Aggelos K.
    DIGITAL SIGNAL PROCESSING, 2020, 101 (101)
  • [10] A Robust BKSVD Method for Blind Color Deconvolution and Blood Detection on H&E Histological Images
    Perez-Bueno, Fernando
    Engan, Kjersti
    Molina, Rafael
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 207 - 217