Infrared and visible image fusion based on a two-stage class conditioned auto-encoder network

被引:7
|
作者
Cao, Yanpeng [1 ,2 ]
Luo, Xing [1 ,2 ]
Tong, Xi [1 ,2 ]
Yang, Jiangxin [1 ,2 ]
Cao, Yanlong [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mech Engn, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mech Engn, Key Lab Adv Mfg Technol Zhejiang Prov, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Infrared imaging; Image fusion; Conditional learning; Auto; -encoder; PERFORMANCE; ALGORITHM; NEST;
D O I
10.1016/j.neucom.2023.126248
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing auto-encoder based infrared and visible image fusion methods typically utilize a shared encoder to extract features from different modalities and adopt a handcrafted fusion strategy to fuse the extracted features into intermediate representation before the decoder part. In this paper, we present a novel two -stage class conditioned auto-encoder framework for high-quality multispectral fusion tasks. In the first training stage, we introduce a class embedding sub-branch to the encoder network for modeling the characteristics of different modalities and adaptively scaling the intermediate features based on the input modality. Moreover, we design a cross-transfer residual block to promote the content and texture infor-mation flow in the encoder for generating more representative features. In the second training stage, we insert a learnable fusion module between the pre-trained class conditioned encoder and decoder parts to replace the handcrafted fusion strategy. Specific intensity and gradient loss functions are utilized to tune the model for the fusion of distinctive deep features in a data-driven manner. With the important designs including the class conditioned auto-encoder and the two-stage training strategy, our proposed TS-ClassFuse can better preserve distinctive information/features from the source images and decrease the training difficulty for simultaneously extracting informative features and determining the optimal fusion scheme. Experimental results verify the effectiveness of our method in terms of both qualitative and quantitative evaluations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A joint convolution auto-encoder network for infrared and visible image fusion
    Zhang, Zhancheng
    Gao, Yuanhao
    Xiong, Mengyu
    Luo, Xiaoqing
    Wu, Xiao-Jun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29017 - 29035
  • [2] A joint convolution auto-encoder network for infrared and visible image fusion
    Zhancheng Zhang
    Yuanhao Gao
    Mengyu Xiong
    Xiaoqing Luo
    Xiao-Jun Wu
    Multimedia Tools and Applications, 2023, 82 : 29017 - 29035
  • [3] Infrared and Visible Image Fusion Based on Residual Dense Block and Auto-Encoder Network
    Wang J.
    Xu H.
    Wang H.
    Yu Z.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2021, 41 (10): : 1077 - 1083
  • [4] Infrared and visible image fusion based on gradient transfer and auto-encoder
    Li, Yan-Feng
    Liu, Ming-Yang
    Hu, Jia-Ming
    Sun, Hua-Dong
    Meng, Jie-Yu
    Wang, Ao-Ying
    Zhang, Han-Yue
    Yang, Hua-Min
    Han, Kai-Xu
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (06): : 1777 - 1787
  • [5] Infrared and visible image fusion based on variational auto-encoder and infrared feature compensation
    Ren, Long
    Pan, Zhibin
    Cao, Jianzhong
    Liao, Jiawen
    INFRARED PHYSICS & TECHNOLOGY, 2021, 117
  • [6] Infrared and Visible Image Fusion Method Based on Convolutional Auto-Encoder and Residual Block
    Jiang Zetao
    He Yuting
    ACTA OPTICA SINICA, 2019, 39 (10)
  • [7] GuideFuse: A Novel Guided Auto-Encoder Fusion Network for Infrared and Visible Images
    Zhang, Zeyang
    Li, Hui
    Xu, Tianyang
    Wu, Xiao-Jun
    Fu, Yu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [8] A two-stage intrusion detection system with auto-encoder and LSTMs
    Mushtaq, Earum
    Zameer, Aneela
    Umer, Muhammad
    Abbasi, Asima Akber
    APPLIED SOFT COMPUTING, 2022, 121
  • [9] FTSFN: A Two-Stage Feature Transfer and Supplement Fusion Network for Infrared and Visible Image Fusion
    Huang, Shuying
    Kong, Xiangkai
    Yang, Yong
    Wan, Weiguo
    Song, Zixiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [10] Two-Stage DDoS Mitigation with Variational Auto-Encoder and Cyclic Queuing
    Yaegashi, Ryo
    Takeshita, Erina
    Nakayama, Yu
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5421 - 5426