A multivariate pseudo-likelihood approach to estimating directional ocean wave models

被引:2
|
作者
Grainger, Jake P. [1 ]
Sykulski, Adam M. [2 ,3 ]
Ewans, Kevin [5 ]
Hansen, Hans F. [6 ]
Jonathan, Philip [2 ,4 ]
机构
[1] Univ Lancaster, STOR i Ctr Doctoral Training, Dept Math & Stat, Lancaster, England
[2] Univ Lancaster, Dept Math & Stat, Lancaster, England
[3] Imperial Coll, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[4] Shell Res Ltd, London, England
[5] MetOcean Res Ltd, New Plymouth, New Zealand
[6] HAW MetOcean ApS, DK-1860 Frederiksberg C, Denmark
基金
英国工程与自然科学研究理事会;
关键词
buoy displacement time-series; debiased Whittle likelihood inference; frequency-direction spectra; North Sea; ocean waves; storm spectral evolution; SPECTRUM; WATER; EVOLUTION;
D O I
10.1093/jrsssc/qlad006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Buoy data in the form of multivariate time series are routinely recorded at many locations in the world's oceans. Such data can help characterise the ocean wavefield by modelling the frequency-direction spectrum. State-of-the-art methods for estimating the parameters of such models do not make use of the full spatiotemporal content of the buoy observations due to unnecessary assumptions and smoothing. We explain how the multivariate debiased Whittle likelihood can be used to jointly estimate all parameters of such frequency-direction spectra directly from recorded time series. We apply the method to North Sea buoy data and discuss challenging practical issues.
引用
收藏
页码:544 / 565
页数:22
相关论文
共 50 条
  • [1] GENERALIZED LINEAR MIXED MODELS - A PSEUDO-LIKELIHOOD APPROACH
    WOLFINGER, R
    OCONNELL, M
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1993, 48 (3-4) : 233 - 243
  • [2] Generalized linear mixed models: a pseudo-likelihood approach
    Delporte, Margaux
    Molenberghs, Geert
    Fieuws, Steffen
    Verbeke, Geert
    BIOSTATISTICS, 2024,
  • [3] Pseudo-likelihood estimation in ARCH models
    Mukherjee, Kanchan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (02): : 341 - 356
  • [4] EXTENDING PSEUDO-LIKELIHOOD FOR POTTS MODELS
    Okabayashi, Saisuke
    Johnson, Leif
    Geyer, Charles J.
    STATISTICA SINICA, 2011, 21 (01) : 331 - 347
  • [5] Pseudo-likelihood estimation for a marginal multivariate survival model
    Tibaldi, F
    Molenberghs, G
    Burzykowski, T
    Geys, H
    STATISTICS IN MEDICINE, 2004, 23 (06) : 947 - 963
  • [6] Pseudo-likelihood approach for parameter estimation in univariate normal mixture models
    Kangro, Raul
    Kuljus, Kristi
    Lember, Juri
    STATISTICAL PAPERS, 2025, 66 (01)
  • [7] A maximum pseudo-likelihood approach for estimating species trees under the coalescent model
    Liu, Liang
    Yu, Lili
    Edwards, Scott V.
    BMC EVOLUTIONARY BIOLOGY, 2010, 10
  • [8] A maximum pseudo-likelihood approach for estimating species trees under the coalescent model
    Liang Liu
    Lili Yu
    Scott V Edwards
    BMC Evolutionary Biology, 10
  • [9] A pseudo-likelihood approach for estimating diagnostic accuracy of multiple binary medical tests
    Liu, Wei
    Zhang, Bo
    Zhang, Zhiwei
    Chen, Baojiang
    Zhou, Xiao-Hua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 85 - 98
  • [10] A maximum pseudo-likelihood approach for phylogenetic networks
    Yu, Yun
    Nakhleh, Luay
    BMC GENOMICS, 2015, 16 : 1 - 10