Robust kernel recursive adaptive filtering algorithms based on M-estimate

被引:6
|
作者
Yang, Xinyue [1 ]
Mu, Yifan [2 ]
Cao, Kui [3 ]
Lv, Mengzhuo [3 ]
Peng, Bei [3 ]
Zhang, Ying [2 ]
Wang, Gang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
关键词
Kernel adaptive filter (KAF); M-estimate; Kernel recursive least squares (KRLS); Kernel recursive maximum correntropy (KRMC);
D O I
10.1016/j.sigpro.2023.108952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When coping with the large outliers in measurement caused by the non-Gaussian environmental noise, although the MCC criterion adopts the high-order statistics, the residual error for large outliers still ex-ists. Considering that the M-estimate works well in minimum square error criterion and it can trun-cate the outliers and further improve the robustness, in this paper, we propose the robust kernel recur-sive least squares algorithms and the robust kernel recursive maximum correntropy algorithms based on three M-estimate methods. Then, numerical simulations verify that the M-estimates help the proposed algorithms have better performance than the conventional kernel recursive adaptive filtering against the non-Gaussian noise.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Robust constrained recursive least M-estimate adaptive filtering algorithm
    Xu, Wenjing
    Zhao, Haiquan
    SIGNAL PROCESSING, 2022, 194
  • [2] Robust M-estimate adaptive filtering
    Zou, Y
    Chan, SC
    Ng, TS
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2001, 148 (04): : 289 - 294
  • [3] Least mean M-estimate algorithms for robust adaptive filtering in impulse noise
    Zou, Yuexian
    Chan, Shing-Chow
    Ng, Tung-Sang
    2000, IEEE, Piscataway, NJ, United States (47):
  • [4] A recursive least M-estimate (RLM) adaptive filter for robust filtering in impulse noise
    Zou, Y
    Chan, SC
    Ng, TS
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 324 - 326
  • [5] Robust Diffusion Recursive Least M-Estimate Adaptive Filtering and Its Performance Analysis
    Lv, Shaohui
    Zhao, Haiquan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (08) : 4929 - 4952
  • [6] Least mean M-estimate algorithms for robust adaptive filtering in impulse noise
    Zou, YX
    Chan, SC
    Ng, TS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (12): : 1564 - 1569
  • [7] Robust Diffusion Recursive Least M-Estimate Adaptive Filtering and Its Performance Analysis
    Shaohui Lv
    Haiquan Zhao
    Circuits, Systems, and Signal Processing, 2023, 42 : 4929 - 4952
  • [8] Proportionate M-estimate adaptive filtering algorithms: Insights and improvements
    Huang, Zongxin
    Yu, Yi
    de Lamare, Rodrigo C.
    Fan, Yongcun
    Li, Ke
    SIGNAL PROCESSING, 2022, 200
  • [9] Robust Gaussian Filtering based on M-estimate with Adaptive Measurement Noise Covariance
    Hu, Baiqing
    Chang, Lubin
    Qin, Fangjun
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 851 - 856
  • [10] A New Family of Robust Sequential Partial Update Least Mean M-estimate Adaptive Filtering Algorithms
    Zhou, Y.
    Chan, S. C.
    Ho, K. L.
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 189 - 192