Split-bucket partition (SBP): a novel execution model for top-K and selection algorithms on GPUs

被引:0
|
作者
Yang, Yiqing [1 ]
Zhang, Guoyin [1 ]
Wu, Yanxia [1 ]
Zhao, Zhixiang [1 ]
Fu, Yan [1 ]
机构
[1] Harbin Engn Univ, Dept Comp Sci, Harbin 150001, Heilongjiang, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 11期
关键词
Bucket partition; Top-K algorithms; Selection algorithms; GPU parallel computing;
D O I
10.1007/s11227-024-06031-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Top-K and selection operations are critical in data processing and analysis, and their efficient implementation on GPUs is increasingly important due to the growing demands of data analysis. Existing methods, primarily relying on the bucket partition execution model, encounter challenges such as uneven bucket distribution and latency in merging processes. To address these issues, we introduce a novel Split-Bucket Partition (SBP) execution model that specifically addresses these challenges. Additionally, we propose task and control flow optimizations targeted at top-K and selection algorithms, which further contribute to performance improvements. Our optimized algorithms significantly outperform existing approaches, delivering performance gains of up to 2.3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.3$$\end{document} times and 1.6 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6$$\end{document} times for different bucket partitioning rules. Our algorithms show robust performance improvements in non-uniform data scenarios, with gains ranging from 1.9 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.9$$\end{document} times to 15.5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$15.5$$\end{document} times. However, it should be noted that the SBP model has limitations related to shared memory and register utilization, potentially impacting performance. Tests on TU102 and A100 GPU architectures validate the effectiveness of our approach, achieving a maximum speedup of 2.9 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.9$$\end{document} times. The study suggests that while the SBP model is effective for top-K and selection algorithms, it also holds promise for other computational tasks, setting the stage for future research.
引用
收藏
页码:15122 / 15160
页数:39
相关论文
共 10 条
  • [1] Parallel Strategies for the Execution of Top-k Queries with MaxScore on GPUs
    Gaioso, Roussian
    Guardia, Helio
    Gil-Costa, Veronica
    Senger, Hermes
    2019 31ST INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2019), 2019, : 104 - 111
  • [2] POSTER: RadiK: Scalable Radix Top-K Selection on GPUs
    Li, Yifei
    Zhou, Bole
    Zhang, Jiejing
    Wei, Xuechao
    Li, Yinghan
    Chen, Yingda
    PROCEEDINGS OF THE 29TH ACM SIGPLAN ANNUAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, PPOPP 2024, 2024, : 472 - 474
  • [3] Communication Efficient Algorithms for Top-k Selection Problems
    Huebschle-Schneider, Lorenz
    Sanders, Peter
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, : 659 - 668
  • [4] Efficient Top-k Query Algorithms Using K-Skyband Partition
    Gong, Zhenqiang
    Sun, Guang-Zhong
    Yuan, Jing
    Zhong, Yanjing
    SCALABLE INFORMATION SYSTEMS, 2009, 18 : 288 - 305
  • [5] Optimizing Sorting and Top-k Selection Steps in Permutation Based Indexing on GPUs
    Krulis, Martin
    Osipyan, Hasmik
    Marchand-Maillet, Stephane
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS (ADBIS 2015), 2015, 539 : 305 - 317
  • [6] Bucket partition based privacy-preserving top-k query processing in two-tiered wireless sensor networks
    Dai, Hua
    He, Rui-Liang
    Yang, Geng
    Huang, Hai-Ping
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2015, 38 (05): : 18 - 22
  • [7] Bandit algorithms: A comprehensive review and their dynamic selection from a portfolio for multicriteria top-k recommendation
    Letard, Alexandre
    Gutowski, Nicolas
    Camp, Olivier
    Amghar, Tassadit
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 246
  • [8] Comprehensive Top-K Recommender System for Command and Control, using Novel Evaluation and Optimization Algorithms
    Bajenaru, Victor
    Vaccaro, James
    Colby, Mitchell
    Benyo, Brett
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS IV, 2022, 12113
  • [9] Data Augmentation for Environmental Sound Classification Using Diffusion Probabilistic Model with Top-K Selection Discriminator
    Chen, Yunhao
    Yan, Zihui
    Zhu, Yunjie
    Ren, Zhen
    Shen, Jianlu
    Huang, Yifan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 283 - 295
  • [10] A Novel Top-K Automobiles Probabilistic Recommendation Model using User Preference and User Community
    Chen, Zhuo
    Feng, Yong
    Li, Heng
    2014 IEEE 11TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2014, : 105 - 111