The critical role of intrinsic physicochemical properties of catalysts for CO2 hydrogenation to methanol: A state of the art review

被引:11
|
作者
Hussain, Ijaz [1 ]
Mustapha, Umar [1 ,2 ]
Al-Qathmi, Ahmed T. [3 ]
Malaibari, Zuhair O. [1 ,3 ]
Alotaibi, Sarah [4 ]
Samia [5 ]
Alhooshani, Khalid [1 ,2 ]
Ganiyu, Saheed A. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Dept Chem, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Dept Chem Engn, Dhahran 31261, Saudi Arabia
[4] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07102 USA
[5] Tianjin Univ, Sch Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Tianjin 300072, Peoples R China
关键词
CO2; hydrogenation; Methanol; Physicochemical Properties; Catalytic performance; Climate change; METAL-SUPPORT INTERACTIONS; CARBON-DIOXIDE; DIMETHYL ETHER; CU-ZN; CU/ZRO2; CATALYSTS; ACTIVE-SITES; CU/ZNO/AL2O3; CUO-ZNO-ZRO2; CATALYST; EFFICIENT CATALYSTS; CH3OH SELECTIVITY;
D O I
10.1016/j.jiec.2023.08.012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalytic hydrogenation is one of the most innovative techniques for reducing atmospheric carbon dioxide (CO2) by converting it into beneficial products such as methanol (CH3OH). CH3OH is an alternative fuel that offers a practical, effective, and efficient solution to the energy storage problem. Despite the significant advances in the CO2 hydrogenation process, developing an appropriate and efficient catalytic system remains a significant obstacle and challenge. Many review papers on catalyst development for CO2 hydrogenation have been published, focusing on the influence of transition, noble metal-based catalysts, and process parameter. However, present knowledge of the mutually reinforcing correlations between catalytic properties and CO2 hydrogenation activity has to be enhanced. It is very important to have a comprehensive understanding of the relationship between catalytic performance and physicochemical properties in order to create a catalytic system that is both highly efficient and economically viable for commercialization. Therefore, the focus of this review is on the synergistic interactions between catalytic CO2 hydrogenation activity and catalytic properties such as porosity, surface area, metal-support interaction, metal dispersion, oxygen vacancies, metal particle size, reducibility, and chemical composition acidity/basicity. Furthermore, this review examined and compared the most up-to-date findings on the hydrogenation of CO2 to CH3OH using various heterogeneous catalysts. It also discussed the challenges and prospects for improving CH3OH production by CO2 hydrogenation. Researchers and environmentalists in academia and industry who are interested in finding ways to reduce CO2 emissions will find this overview to be a valuable resource.(c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 126
页数:32
相关论文
共 50 条
  • [1] CO2 hydrogenation to methanol by organometallic catalysts
    Onishi, Naoya
    Himeda, Yuichiro
    CHEM CATALYSIS, 2022, 2 (02): : 242 - 252
  • [2] Review on Cu-based catalysts for CO2 hydrogenation to methanol
    Jia, Chenxi
    Shao, Jing'ai
    Bai, Xiaowei
    Xiao, Jianjun
    Yang, Haiping
    Chen, Hanping
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (09): : 3658 - 3668
  • [3] A review on the development of catalysts and technologies of CO2 hydrogenation to produce methanol
    Yuan, Yongning
    Qi, Liyue
    Guo, Tuo
    Hu, Xiude
    He, Yurong
    Guo, Qingjie
    CHEMICAL ENGINEERING COMMUNICATIONS, 2023, 210 (10) : 1791 - 1821
  • [4] State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol
    Zhong, Jiawei
    Yang, Xiaofeng
    Wu, Zhilian
    Liang, Binglian
    Huang, Yanqiang
    Zhang, Tao
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (05) : 1385 - 1413
  • [5] Hydrogenation of CO2 to methanol over CuCeTiOx catalysts
    Chang, Kuan
    Wang, Tiefeng
    Chen, Jingguang G.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 206 : 704 - 711
  • [6] PdZn catalysts for the direct hydrogenation of CO2 to methanol
    Bahruji, Hasliza
    Bowker, Michael
    Hutchings, Graham
    Jones, Wilm
    Morgan, David
    Armstrong, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [7] Hierarchical catalysts for the CO2 hydrogenation to methanol and olefin
    Wang, Hui
    Gao, Peng
    Wei, Wei
    Sun, Yuhan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] Effect of the Preparation Methods on the Physicochemical Properties of Indium-Based Catalysts and Their Catalytic Performance for CO2 Hydrogenation to Methanol
    Ho, Phuoc Hoang
    Tizzanini, Giovanni
    Ghosh, Sreetama
    Di, Wei
    Shao, Jieling
    Pajalic, Oleg
    Josefsson, Lars
    Benito, Patricia
    Creaser, Derek
    Olsson, Louise
    ENERGY & FUELS, 2024, 38 (06) : 5407 - 5420
  • [9] Catalytic Hydrogenation of CO2 to Methanol: A Review
    Ren, Menghao
    Zhang, Yanmin
    Wang, Xuan
    Qiu, Hengshan
    CATALYSTS, 2022, 12 (04)
  • [10] Advancement and State-of-art of heterogeneous catalysis for selective CO2 hydrogenation to methanol
    Darji, Harsh R.
    Kale, Hanumant B.
    Shaikh, Farhan F.
    Gawande, Manoj B.
    COORDINATION CHEMISTRY REVIEWS, 2023, 497