Dynamic Offloading for Edge Computing-Assisted Metaverse Systems

被引:22
|
作者
Hoa, Nguyen Tien [1 ]
Huy, Le Van [1 ]
Son, Bui Duc [1 ]
Luong, Nguyen Cong [2 ]
Niyato, Dusit [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Elect Engn, Hanoi 100000, Vietnam
[2] Phenikaa Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
~Metaverse; digital twin; promptness; edge computing; deep reinforcement learning;
D O I
10.1109/LCOMM.2023.3274649
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we investigate an edge computing-assisted Metaverse system. This system involves a virtual service provider (VSP), which can partially offload sensing data collected from UAVs to an edge computing platform. The data is used to update its digital twins (DTs) to ensure the promptness of Metaverse services and satisfy the latency requirements of Metaverse users. However, designing such a system is challenging due to the dynamics of sensing data, the latency requirements of Metaverse users, channel conditions, and the available computing resources at both the VSP and EC. Therefore, we formulate the VSP's offloading problem as a stochastic problem and utilize deep reinforcement learning (DRL) algorithms. Simulation results are provided to validate the effectiveness of the learning algorithms.
引用
收藏
页码:1749 / 1753
页数:5
相关论文
共 50 条
  • [1] Incentive Mechanism and Semantic Communication for Edge Computing-Assisted Metaverse
    Luong, Nguyen Cong
    Huynh-The, Thien
    Nguyen, Van-Dinh
    Ng, Derrick Wing Kwan
    Chatzinotas, Symeon
    Niyato, Dusit
    Pham, Quoc-Viet
    IEEE NETWORK, 2024, 38 (03): : 277 - 284
  • [2] Edge Computing-Assisted Joint Offloading and Migration in Parking Lots Scenarios
    Du, Yanxi
    Zhang, Ke
    Lu, Yunlong
    Leng, Supeng
    He, Jianhua
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [3] Robust Offloading for Edge Computing-Assisted Sensing and Communication Systems: A Deep Reinforcement Learning Approach
    Shen, Li
    Li, Bin
    Zhu, Xiaojie
    SENSORS, 2024, 24 (08)
  • [4] Adaptive Partial Offloading and Resource Harmonization in Wireless Edge Computing-Assisted IoE Networks
    Lakew, Demeke Shumeye
    Tuong, Van Dat
    Dao, Nhu-Ngoc
    Cho, Sungrae
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3028 - 3044
  • [5] Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks
    Wan, Shaohua
    Li, Xiang
    Xue, Yuan
    Lin, Wenmin
    Xu, Xiaolong
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (04): : 2518 - 2547
  • [6] Efficient computation offloading for Internet of Vehicles in edge computing-assisted 5G networks
    Shaohua Wan
    Xiang Li
    Yuan Xue
    Wenmin Lin
    Xiaolong Xu
    The Journal of Supercomputing, 2020, 76 : 2518 - 2547
  • [7] Delay-sensitive and Priority-aware Task Offloading for Edge Computing-assisted Healthcare Services
    Mukherjee, Mithun
    Kumar, Vikas
    Maity, Dipendu
    Matam, Rakesh
    Mavromoustakis, Constandinos X.
    Zhang, Qi
    Mastorakis, George
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [8] Scheduling for Maximizing the Information Freshness in Vehicular Edge Computing-Assisted IoT Systems
    Xie, Xin
    Zhong, Tao
    Wang, Heng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (03) : 4140 - 4151
  • [9] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [10] Delay-Sensitive Task Offloading in Vehicular Fog Computing-Assisted Platoons
    Wu, Qiong
    Wang, Siyuan
    Ge, Hongmei
    Fan, Pingyi
    Fan, Qiang
    Letaief, Khaled Ben
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2012 - 2026