Robust PCA for Anomaly Detection and Data Imputation in Seasonal Time Series

被引:0
|
作者
Botterman, Hong-Lan [1 ]
Roussel, Julien [1 ]
Morzadec, Thomas [1 ]
Jabbari, Ali [1 ]
Brunel, Nicolas [1 ]
机构
[1] Quantmetry, 52 Rue Anjou, F-75008 Paris, France
关键词
Robust principal component analysis; Anomaly detection; Data imputation; Regularisation; Adaptive estimation; SPARSE;
D O I
10.1007/978-3-031-25891-6_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a robust principal component analysis (RPCA) framework to recover low-rank and sparse matrices from temporal observations. We develop an online version of the batch temporal algorithm in order to process larger datasets or streaming data. We empirically compare the proposed approaches with different RPCA frameworks and show their effectiveness in practical situations.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 50 条
  • [1] Anomaly Detection in Time Series via Robust PCA
    Jin, Yongjun
    Qiu, Chenlu
    Sun, Lei
    Peng, Xuan
    Zhou, Jianning
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2017, : 352 - 355
  • [2] Anomaly Detection in Multi-Seasonal Time Series Data
    Williams, Ashton T.
    Sperl, Ryan E.
    Chung, Soon M.
    IEEE ACCESS, 2023, 11 : 106456 - 106464
  • [3] Unsupervised anomaly detection and imputation in noisy time series data for enhancing load forecasting
    Dissem, Maher
    Amayri, Manar
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [4] Unsupervised Anomaly Detection for Seasonal Time Series
    von Werra, Leandro
    Tunstall, Lewis
    Hofer, Simon
    2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, : 136 - 137
  • [5] Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data
    Yokkampon, Umaporn
    Mowshowitz, Abbe
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    IEEE ACCESS, 2022, 10 : 57835 - 57849
  • [6] A Novel Clustering Anomaly Detection of PCA Based Time Series Features with CNC Machines Data
    Ha, Hyeonjong
    Min, Dongwhan
    Jeong, Jongpil
    INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1, 2022, 468 : 22 - 31
  • [7] Anomaly Detection Using a Sliding Window Technique and Data Imputation with Machine Learning for Hydrological Time Series
    Kulanuwat, Lattawit
    Chantrapornchai, Chantana
    Maleewong, Montri
    Wongchaisuwat, Papis
    Wimala, Supaluk
    Sarinnapakorn, Kanoksri
    Boonya-aroonnet, Surajate
    WATER, 2021, 13 (13)
  • [8] Analysis of time series data for anomaly detection
    Ferencz, Katalin
    Domokos, Jozsef
    Kovacs, Levente
    2022 IEEE 22ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 8TH IEEE INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCE AND ROBOTICS (CINTI-MACRO), 2022, : 95 - 100
  • [9] Anomaly Detection for Time Series Data Stream
    Wang, Qifan
    Yan, Bo
    Su, Hongyi
    Zheng, Hong
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021), 2021, : 118 - 122
  • [10] Warping resilient robust anomaly detection for multivariate time series
    Abilasha, S.
    Bhadra, Sahely
    MACHINE LEARNING, 2025, 114 (02)