Preparation of layered Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode materials with excellent electrochemical properties by controllable lithium supply and sintering

被引:11
|
作者
Han, Yu [1 ]
Wang, Tianyu [2 ]
Yin, Likun [1 ]
Wu, Zhuoyan [1 ]
Bi, Ran [1 ]
Li, Binke [1 ]
Yang, Yue [2 ]
机构
[1] China Three Gorges Corp, Inst Sci & Technol, Comprehens Energy Res Ctr, Beijing 101100, Peoples R China
[2] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Li supply amount; Sintering temperature; LiNi0; 9Co0; 05Mn0; Electrochemical properties; RESIDUAL LITHIUM; CALCINATION TEMPERATURE; ION; SURFACE; OXIDE; PERFORMANCE; IMPACT;
D O I
10.1016/j.est.2023.107541
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Layered Ni-rich cathode materials (LiNixCoyMn1-x-yO2) are promising cathode materials for next-generation lithium-ion batteries due to their high reversible capacity and energy density. However, it is still facing the challenges in unstable structure and weak electrochemical properties, inhibiting their large-scale application. Herein, Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode materials are synthesized using Ni0.9Co0.05Mn0.05(OH)2 precursors and Li source by two-steps heating treatment processes. Their structure and properties are regulated by con -trolling Li supply amounts and sintering temperature to further expand the applications of Ni-rich cathode materials. Experimental results suggest that the preheating at 500 degrees C effectively establishes a structural foun-dation (R-3m) for the following sintering of LiNi0.9Co0.05Mn0.05O2 materials. Furthermore, it is found that Li supply amount and sintering temperature have a certain correlation with the structural stability and electro-chemical properties of materials. At Li supply amount 1.04 (Li/transition metals atom ratio) and sintering temperature 700 degrees C, the prepared LiNi0.9Co0.05Mn0.05O2 materials exhibit optimal electrochemical properties (77.0 % capacity retention after 400 cycles at 1C, and about 128.0 mAh g-1 discharge capacity at 10C). This study provides a rational regulating strategy for synthesizing Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode materials with controllable structural and electrochemical properties, further expanding their applications in the fields of smart grids and electric vehicles.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution
    Qi-Qi Qiu
    Shan-Shan Yuan
    Jian Bao
    Qin-Chao Wang
    Xin-Yang Yue
    Xun-Lu Li
    Xiao-Jing Wu
    Yong-Ning Zhou
    Journal of Energy Chemistry, 2021, 61 (10) : 574 - 581
  • [2] Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution
    Qiu, Qi-Qi
    Yuan, Shan-Shan
    Bao, Jian
    Wang, Qin-Chao
    Yue, Xin-Yang
    Li, Xun-Lu
    Wu, Xiao-Jing
    Zhou, Yong-Ning
    JOURNAL OF ENERGY CHEMISTRY, 2021, 61 : 574 - 581
  • [3] Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries
    Abebe, Eyob Belew
    Yang, Chun-Chen
    Wu, She-Huang
    Chien, Wen-Chen
    Li, Ying-Jeng James
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 14295 - 14308
  • [4] The influence of surface lithium residue to the performance of LiNi0.9Co0.05Mn0.05O2 cathode materials
    Liu, Junjie
    Chu, Chenxiao
    Qin, Xianzhong
    Meng, Weisong
    Xu, Xinrui
    Wang, Bo
    Cai, Feipeng
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2023, 60 (03) : 462 - 473
  • [5] The influence of surface lithium residue to the performance of LiNi0.9Co0.05Mn0.05O2 cathode materials
    Junjie Liu
    Chenxiao Chu
    Xianzhong Qin
    Weisong Meng
    Xinrui Xu
    Bo Wang
    Feipeng Cai
    Journal of the Korean Ceramic Society, 2023, 60 : 462 - 473
  • [6] Enhanced electrochemical performance of Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode material via synergistic modification of cerium doping and ceria coating
    Xiang Zhang
    Guorong Hu
    Ke Du
    Zhongdong Peng
    Weigang Wang
    Chaopu Tan
    Yongzhi Wang
    Yanbing Cao
    Ionics, 2023, 29 : 549 - 561
  • [7] Enhanced electrochemical performance of Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode material via synergistic modification of cerium doping and ceria coating
    Zhang, Xiang
    Hu, Guorong
    Du, Ke
    Peng, Zhongdong
    Wang, Weigang
    Tan, Chaopu
    Wang, Yongzhi
    Cao, Yanbing
    IONICS, 2023, 29 (02) : 549 - 561
  • [8] Sn-modified LiNi0.9Co0.05Mn0.05O2 cathode with extraordinary electrochemical performances
    Kang, Chea-Yun
    Lee, Seung-Hwan
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2022, 23 (03): : 243 - 246
  • [9] Insights into the porosity and radial structure for precursor of Ni-Rich LiNi0.9Co0.05 Mn0.05O2 cathode materials
    Chen, Jiuhua
    Feng, Shuyao
    Deng, Junhai
    Zhou, Yefeng
    CHEMICAL ENGINEERING SCIENCE, 2025, 304
  • [10] Fluorine migration and in-situ doping for regeneration of Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode material from spent lithium-ion batteries
    Wang, Tianyu
    Yi, Chenxing
    Ge, Peng
    Wang, Li
    Sun, Wei
    Wu, Meirong
    Zhang, Chi
    Yang, Yue
    SCIENCE CHINA-MATERIALS, 2023, 66 (09) : 3433 - 3444