Continuous Semi-Supervised Nonnegative Matrix Factorization

被引:2
|
作者
Lindstrom, Michael R. R. [1 ]
Ding, Xiaofu [2 ]
Liu, Feng [2 ]
Somayajula, Anand [2 ]
Needell, Deanna [2 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
topic modelling; regression; nonnegative matrix factorization; optimization; CONSTRAINED LEAST-SQUARES; ALGORITHMS;
D O I
10.3390/a16040187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative matrix factorization can be used to automatically detect topics within a corpus in an unsupervised fashion. The technique amounts to an approximation of a nonnegative matrix as the product of two nonnegative matrices of lower rank. In certain applications it is desirable to extract topics and use them to predict quantitative outcomes. In this paper, we show Nonnegative Matrix Factorization can be combined with regression on a continuous response variable by minimizing a penalty function that adds a weighted regression error to a matrix factorization error. We show theoretically that as the weighting increases, the regression error in training decreases weakly. We test our method on synthetic data and real data coming from Rate My Professors reviews to predict an instructor's rating from the text in their reviews. In practice, when used as a dimensionality reduction method (when the number of topics chosen in the model is fewer than the true number of topics), the method performs better than doing regression after topics are identified-both during training and testing-and it retrains interpretability.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Semi-Supervised Nonnegative Matrix Factorization
    Lee, Hyekyoung
    Yoo, Jiho
    Choi, Seungjin
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (01) : 4 - 7
  • [2] Robust Semi-supervised Nonnegative Matrix Factorization
    Wang, Jing
    Tian, Feng
    Liu, Chang Hong
    Wang, Xiao
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [3] Semi-supervised Nonnegative Matrix Factorization with Commonness Extraction
    Teng, Yueyang
    Qi, Shouliang
    Dai, Yin
    Xu, Lisheng
    Qian, Wei
    Kang, Yan
    NEURAL PROCESSING LETTERS, 2017, 45 (03) : 1063 - 1076
  • [4] Semi-supervised Nonnegative Matrix Factorization with Commonness Extraction
    Yueyang Teng
    Shouliang Qi
    Yin Dai
    Lisheng Xu
    Wei Qian
    Yan Kang
    Neural Processing Letters, 2017, 45 : 1063 - 1076
  • [5] Robust semi-supervised nonnegative matrix factorization for image clustering
    Peng, Siyuan
    Ser, Wee
    Chen, Badong
    Lin, Zhiping
    PATTERN RECOGNITION, 2021, 111
  • [6] Semi-Supervised Nonnegative Matrix Factorization via Constraint Propagation
    Wang, Di
    Gao, Xinbo
    Wang, Xiumei
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 233 - 244
  • [7] Supervised and Semi-supervised Speech Enhancement Using Weighted Nonnegative Matrix Factorization
    Zou, Xia
    Hu, Yonggang
    Zhang, Xiongwei
    2017 9TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2017,
  • [8] Laplace Nonnegative Matrix Factorization with Application to Semi-supervised Audio Denoising
    Tanji, Hiroki
    Murakami, Takahiro
    Kamata, Hiroyuki
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [9] Semi-supervised nonnegative matrix factorization with positive and negative label propagations
    Wang, Changpeng
    Zhang, Jiangshe
    Wu, Tianjun
    Zhang, Meng
    Shi, Guang
    APPLIED INTELLIGENCE, 2022, 52 (09) : 9739 - 9750
  • [10] Semi-supervised nonnegative matrix factorization with label propagation and constraint propagation
    Mo, Yuanjian
    Li, Xiangli
    Mei, Jianping
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133