A generalized Rényi entropy to measure the uncertainty of a random permutation set

被引:0
|
作者
Hao, Bingguang [1 ,2 ]
Che, Yuelin [1 ,3 ]
Chen, Luyuan [1 ]
Deng, Yong [1 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Yingcai Honors Coll, Chengdu, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Management & Econ, Chengdu, Peoples R China
[4] Vanderbilt Univ, Sch Med, Nashville, TN USA
基金
中国国家自然科学基金;
关键词
Random permutation set; Entropy; Uncertainty measure; Shannon entropy; Renyi entropy; Deng entropy;
D O I
10.1080/03610926.2023.2292973
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Random permutation set (RPS) introduces a novel set that considers all subsets with ordered elements from a given set. Each subset with ordered elements represents a permutation event within the permutation event space (PES). The permutation mass function (PMF) represents the chance of occurrence of events in the PES. PES and PMF make up RPS, which contains ordered information and also provides a new insight to consider the uncertainty. This characteristic aligns more closely with the occurrence of ordered events in the real world. However, existing entropies cannot measure the uncertainty with ordered information. To address this issue, a generalized Renyi entropy is proposed, it degenerates into different entropies with the changing of scenarios and parameters, in other words, it is compatible with these entropies. When the events in permutation event space are not ordered, Renyi-RPS entropy degenerates into Deng entropy. In addition, Renyi-RPS entropy further degenerates into Renyi entropy under the probability distribution. In a further way, when the parameter alpha -> 1, Renyi-RPS entropy evolves into Shannon entropy. Several numerical examples will illustrate the characteristics of the presented Renyi-RPS entropy.
引用
收藏
页码:8543 / 8555
页数:13
相关论文
共 50 条
  • [1] A generalized complexity measure based on Rényi entropy
    Pablo Sánchez-Moreno
    Juan Carlos Angulo
    Jesus S. Dehesa
    The European Physical Journal D, 2014, 68
  • [2] Entropy of Random Permutation Set
    Chen, Luyuan
    Deng, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (11) : 4127 - 4146
  • [3] Estimation of Rényi entropy for lifetime uncertainty
    Subhash, Silpa
    Sunoj, S. M.
    Nair, N. Unnikrishnan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (08) : 1673 - 1690
  • [4] Maximum entropy of random permutation set
    Deng, Jixiang
    Deng, Yong
    SOFT COMPUTING, 2022, 26 (21) : 11265 - 11275
  • [5] Maximum entropy of random permutation set
    Jixiang Deng
    Yong Deng
    Soft Computing, 2022, 26 : 11265 - 11275
  • [6] Limit of the maximum random permutation set entropy
    Zhou, Jiefeng
    Li, Zhen
    Cheong, Kang Hao
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 664
  • [7] Rényi entropy uncertainty relation for successive projective measurements
    Jun Zhang
    Yang Zhang
    Chang-shui Yu
    Quantum Information Processing, 2015, 14 : 2239 - 2253
  • [8] Generalized entropy as a measure of quantum uncertainty
    Portesi, M.
    Plastino, A.
    Physica A: Statistical and Theoretical Physics, 1996, 225 (3-4):
  • [9] Generalized entropy as a measure of quantum uncertainty
    Portesi, M
    Plastino, A
    PHYSICA A, 1996, 225 (3-4): : 412 - 430
  • [10] Generalized entropy as a measure of quantum uncertainty
    Departamento de Física, Universidad Nacional de la Plata, Casilla de Correo 67, La Plata, Argentina
    Physica A: Statistical Mechanics and its Applications, 1996, 225 (3-4) : 412 - 430