Artificial intelligence-aided diagnostic imaging: A state-of-the-art technique in precancerous screening

被引:0
|
作者
Lu, Yang-Bor [1 ,2 ]
Lu, Si-Cun [3 ,4 ]
Li, Fu-Dong [5 ,6 ]
Le, Puo-Hsien [6 ]
Zhang, Kai-Hua [7 ]
Sun, Zi-Zheng [7 ]
Huang, Yung-Ning [1 ,2 ]
Weng, Yu-Chieh [1 ,2 ]
Chen, Wei-Ting [6 ]
Fu, Yi-Wei [8 ]
Qian, Jun-Bo [9 ]
Hu, Bin [10 ]
Xu, Hong [5 ,6 ]
Chiu, Cheng-Tang [7 ,12 ,16 ]
Xu, Qin-Wei [11 ,15 ]
Gong, Wei [3 ,4 ,13 ,14 ]
机构
[1] Xiamen Chang Gung Hosp, Dept Digest Dis, Xiamen, Peoples R China
[2] Hua Qiao Univ, Xiamen Chang Gung Hosp, Endoscopy Ctr, Xiamen, Peoples R China
[3] Shenzhen Hosp, Dept Gastroenterol, Shenzhen, Peoples R China
[4] Southern Med Univ, Sch Clin Med 3, Shenzhen, Peoples R China
[5] First Hosp Jilin Univ, Dept Gastroenterol, Jilin, Peoples R China
[6] First Hosp Jilin Univ, Endoscopy Ctr, Jilin, Peoples R China
[7] Nanjing Univ Informat Sci& Technol, Sch Comp, Nanjing, Peoples R China
[8] Nanjing Med Univ, Affiliated Taizhou Peoples Hosp, Dept Gastroenterol, Nanjing, Peoples R China
[9] Nantong Univ, Hosp 2, Dept Gastroenterol, Nantong, Peoples R China
[10] Sichuan Univ, West China Hosp, Dept Gastroenterol, Chengdu, Peoples R China
[11] Tongji Univ, Shanghai East Hosp, Dept Endoscopy, Endoscopy Ctr,Sch Med, Shanghai, Peoples R China
[12] Chang Gung Mem Hosp, Linkou Branch, Dept Gastroenterol & Hepatol, Taoyuan, Taiwan
[13] Southern Med Univ, Shenzhen Hosp, Dept Gastroenterol, Shenzhen, Peoples R China
[14] Southern Med Univ, Sch Clin Med 3, 1333 Xinhu Rd, Shenzhen 518000, Guangdong, Peoples R China
[15] Tongji Univ, Shanghai East Hosp, Endoscopy Ctr, Sch Med,Dept Gastroenterol, Shanghai 200120, Peoples R China
[16] Chang Gung Mem Hosp, Dept Gastroenterol & Hepatol, Linkou Branch, 5 Fuxing St, Taoyuan City 333, Taiwan
关键词
Artificial intelligence; Chromoendoscopy; Image-enhanced endoscopy; Virtual indigo carmine staining; EUROPEAN-SOCIETY; CHROMOENDOSCOPY; SURVEILLANCE; DYSPLASIA; COLONOSCOPY; GUIDELINES; MANAGEMENT; CONSENSUS; LESIONS; COLOR;
D O I
10.1111/jgh.16429
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aim: Chromoendoscopy with the use of indigo carmine (IC) dye is a crucial endoscopic technique to identify gastrointestinal neoplasms. However, its performance is limited by the endoscopist's skill, and no standards are available for lesion identification. Thus, we developed an artificial intelligence (AI) model to replace chromoendoscopy.Methods: This pilot study assessed the feasibility of our novel AI model in the conversion of white-light images (WLI) into virtual IC-dyed images based on a generative adversarial network. The predictions of our AI model were evaluated against the assessments of five endoscopic experts who were blinded to the purpose of this study with a staining quality rating from 1 (unacceptable) to 4 (excellent).Results: The AI model successfully transformed the WLI of polyps with different morphologies and different types of lesions in the gastrointestinal tract into virtual IC-dyed images. The quality ratings of the real IC-dyed and AI images did not significantly differ concerning surface structure (AI vs IC: 3.08 vs 3.00), lesion border (3.04 vs 2.98), and overall contrast (3.14 vs 3.02) from 10 sets of images (10 AI images and 10 real IC-dyed images). Although the score depended significantly on the evaluator, the staining methods (AI or real IC) and evaluators had no significant interaction (P > 0.05) with each other.Conclusion: Our results demonstrated the feasibility of employing AI model's virtual IC staining, increasing the possibility of being employed in daily practice. This novel technology may facilitate gastrointestinal lesion identification in the future.
引用
收藏
页码:544 / 551
页数:8
相关论文
共 50 条
  • [1] Artificial Intelligence-Aided Design (AIAD) for Structures and Engineering: A State-of-the-Art Review and Future Perspectives
    Ao, Yu
    Li, Shaofan
    Duan, Huiling
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025,
  • [2] Artificial Intelligence-Aided Endoscopy and Colorectal Cancer Screening
    Spadaccini, Marco
    Massimi, Davide
    Mori, Yuichi
    Alfarone, Ludovico
    Fugazza, Alessandro
    Maselli, Roberta
    Sharma, Prateek
    Facciorusso, Antonio
    Hassan, Cesare
    Repici, Alessandro
    DIAGNOSTICS, 2023, 13 (06)
  • [3] Artificial intelligence-aided optical imaging for cancer theranostics
    Xu, Mengze
    Chen, Zhiyi
    Zheng, Junxiao
    Zhao, Qi
    Yuan, Zhen
    SEMINARS IN CANCER BIOLOGY, 2023, 94 : 62 - 80
  • [4] Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review
    Dey, Damini
    Slomka, Piotr J.
    Leeson, Paul
    Comaniciu, Dorin
    Shrestha, Sirish
    Sengupta, Partho P.
    Marwick, Thomas H.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) : 1317 - 1335
  • [5] Assessment of artificial intelligence-aided computed tomography in lung cancer screening
    Noha A. Aboelenin
    Ahmed Elserafi
    Noha Zaki
    Essam A. Rashed
    Mohammad al-Shatouri
    Egyptian Journal of Radiology and Nuclear Medicine, 54
  • [6] Assessment of artificial intelligence-aided computed tomography in lung cancer screening
    Aboelenin, Noha A.
    Elserafi, Ahmed
    Zaki, Noha
    Rashed, Essam A.
    al-Shatouri, Mohammad
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2023, 54 (01):
  • [7] Artificial intelligence-aided colonoscopy in 10 years
    Mohan, Babu P.
    GASTROINTESTINAL ENDOSCOPY, 2024, 99 (03) : 452 - 453
  • [8] Applications of artificial intelligence in multimodality cardiovascular imaging: A state-of-the-art review
    Xu, Bo
    Kocyigit, Duygu
    Grimm, Richard
    Griffin, Brian P.
    Cheng, Feixiong
    PROGRESS IN CARDIOVASCULAR DISEASES, 2020, 63 (03) : 367 - 376
  • [9] Artificial intelligence-aided nanoplasmonic biosensor modeling
    Hamedi, Samaneh
    Jahromi, Hamed Dehdashti
    Lotfiani, Ahmad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [10] Artificial intelligence-aided data mining of medical records for cancer detection and screening
    Haue, Amalie Dahl
    Hjaltelin, Jessica Xin
    Holm, Peter Christoffer
    Placido, Davide
    Brunak, Soren
    LANCET ONCOLOGY, 2024, 25 (12): : e694 - e703