HEFactory: A symbolic execution compiler for privacy-preserving Deep Learning with Homomorphic Encryption

被引:1
|
作者
Cabrero-Holgueras, Jose [1 ]
Pastrana, Sergio [1 ]
机构
[1] Univ Carlos III Madrid, Madrid, Spain
关键词
Homomorphic Encryption; Deep Learning; Symbolic execution; Privacy-preserving computation;
D O I
10.1016/j.softx.2023.101396
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Homomorphic Encryption (HE) allows computing operations on encrypted data, and it is a potential solution to enable Deep Learning (DL) in privacy-enforcing scenarios (e.g., sending private data to cloud services). However, HE remains a complex technology with multiple challenges that prevent successful application by non-experts. In this work, we present HEFactory, a program compiler that effectively assists in building HE applications in Python for both general-purpose and Deep Learning applications, focusing on non-expert data scientists. HEFactory relies on a layered architecture that deals with challenges such as automatic parameter selection and specific data representation of HE applications. Our benchmarks show that HEFactory substantially lowers the programming complexity (i.e., a reduction of 80% in the number of lines of code) with negligible performance overhead over programs written by experts using native HE frameworks.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On Fully Homomorphic Encryption for Privacy-Preserving Deep Learning
    Hernandez Marcano, Nestor J.
    Moller, Mads
    Hansen, Soren
    Jacobsen, Rune Hylsberg
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [2] Privacy-Preserving Deep Learning With Homomorphic Encryption: An Introduction
    Falcetta, Alessandro
    Roveri, Manuel
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (03) : 14 - 25
  • [3] Privacy-Preserving Deep Learning via Additively Homomorphic Encryption
    Moriai, Shiho
    2019 IEEE 26TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2019, : 198 - 198
  • [4] Privacy-Preserving Deep Learning via Additively Homomorphic Encryption
    Phong, Le Trieu
    Aono, Yoshinori
    Hayashi, Takuya
    Wang, Lihua
    Moriai, Shiho
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (05) : 1333 - 1345
  • [5] Privacy-Preserving Collective Learning With Homomorphic Encryption
    Paul, Jestine
    Annamalai, Meenatchi Sundaram Muthu Selva
    Ming, William
    Al Badawi, Ahmad
    Veeravalli, Bharadwaj
    Aung, Khin Mi Mi
    IEEE ACCESS, 2021, 9 : 132084 - 132096
  • [6] Privacy-Preserving Swarm Learning Based on Homomorphic Encryption
    Chen, Lijie
    Fu, Shaojing
    Lin, Liu
    Luo, Yuchuan
    Zhao, Wentao
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 509 - 523
  • [7] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [8] A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption
    Podschwadt, Robert
    Takabi, Daniel
    Hu, Peizhao
    Rafiei, Mohammad H. H.
    Cai, Zhipeng
    IEEE ACCESS, 2022, 10 : 117477 - 117500
  • [9] Privacy-Preserving Distributed Deep Learning via Homomorphic Re-Encryption
    Tang, Fengyi
    Wu, Wei
    Liu, Jian
    Wang, Huimei
    Xian, Ming
    ELECTRONICS, 2019, 8 (04)
  • [10] Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network
    Lee, Joon-Woo
    Kang, Hyungchul
    Lee, Yongwoo
    Choi, Woosuk
    Eom, Jieun
    Deryabin, Maxim
    Lee, Eunsang
    Lee, Junghyun
    Yoo, Donghoon
    Kim, Young-Sik
    No, Jong-Seon
    IEEE ACCESS, 2022, 10 : 30039 - 30054