Mitigating Ion Migration with an Ultrathin Self-Assembled Ionic Insulating Layer Affords Efficient and Stable Wide-Bandgap Inverted Perovskite Solar Cells

被引:15
|
作者
Guo, Haodan [1 ,2 ]
Fang, Yanyan [1 ,2 ,3 ]
Lei, Yan [1 ,2 ]
Wu, Jinpeng [2 ]
Li, Minghua [4 ]
Li, Xiangrong [1 ,2 ]
Cheng, Hong Bo [4 ]
Lin, Yuan [1 ,2 ]
Dyson, Paul J. [3 ]
机构
[1] Chinese Acad Sci, Key Lab Photochem, Beijing Natl Lab Mol Sci, Key Lab Photochem,Inst Chem,CAS Res Educ Ctr Excel, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[3] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
[4] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing Lab Biomed Mat, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
inverted perovskite solar cells; ion migration; phase segregation; wide-bandgap; PASSIVATION; CONTACTS; LENGTHS;
D O I
10.1002/smll.202302021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (V-OC) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces V-OC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a V-OC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 degrees C for 1128 h in an N-2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Self-Assembled Amphiphilic Monolayer for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Liu, Lu
    Yang, Yang
    Du, Minyong
    Cao, Yuexian
    Ren, Xiaodong
    Zhang, Lu
    Wang, Hui
    Zhao, Shuai
    Wang, Kai
    Liu, Shengzhong
    ADVANCED ENERGY MATERIALS, 2023, 13 (04)
  • [2] Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells
    Sun, Qing
    Zong, Beibei
    Meng, Xiangxin
    Shen, Bo
    Li, Xu
    Kang, Bonan
    Silva, S. Ravi P.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6702 - 6713
  • [3] Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance
    Li, Chi
    Zhang, Zilong
    Zhang, Huifeng
    Yan, Wenlong
    Li, Yuheng
    Liang, Lusheng
    Yu, Wei
    Yu, Xuteng
    Wang, Yao
    Yang, Ye
    Nazeeruddin, Mohammad Khaja
    Gao, Peng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (01)
  • [4] Ultrafast hole transfer mediated by a conjugated self-assembled molecule enables efficient and stable wide-bandgap perovskite solar cells
    Guo, Yuxiao
    Guo, Shiyan
    Wu, Tai
    Zhan, Shaoqi
    Wei, Changting
    Luo, Xin
    Huang, Jinhai
    Su, Jianhua
    Hua, Yong
    Xu, Bo
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [5] Role of NiO in wide-bandgap perovskite solar cells based on self-assembled monolayers
    Zhang, Afei
    Li, Mingyu
    Dong, Chong
    Ye, Wenjiang
    Zhu, Yongxin
    Yang, Jiakuan
    Hu, Long
    Li, Xiong
    Xu, Ling
    Zhou, Ying
    Song, Haisheng
    Chen, Chao
    Tang, Jiang
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [6] Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems
    Shi, Chenyang
    Wang, Jianan
    Lei, Xia
    Zhou, Qisen
    Wang, Weitao
    Yang, Zhichun
    Liu, Sanwan
    Zhang, Jiaqi
    Zhu, He
    Chen, Rui
    Pan, Yongyan
    Tan, Zhengtian
    Liu, Wenguang
    Zhao, Zhengjing
    Cai, Zihe
    Qin, Xiaojun
    Zhao, Zhiguo
    Li, Jingbai
    Liu, Zonghao
    Chen, Wei
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [7] Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Zhao, Xiaoni
    Cao, Jiali
    Nie, Ting
    Liu, Shengzhong
    Fang, Zhimin
    SOLAR RRL, 2024, 8 (20):
  • [8] Multifunctional Buffer Layer Engineering for Efficient and Stable Wide-Bandgap Perovskite and Perovskite/Silicon Tandem Solar Cells
    Ji, Xiaofei
    Ding, Yian
    Bi, Leyu
    Yang, Xin
    Wang, Jiarong
    Wang, Xiaoting
    Liu, Yuanzhong
    Yan, Yiran
    Zhu, Xiangrong
    Huang, Jin
    Yang, Liyou
    Fu, Qiang
    Jen, Alex K. -Y.
    Lu, Linfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (32)
  • [9] Suppressed Ion Migration by Heterojunction Layer for Stable Wide-Bandgap Perovskite and Tandem Photovoltaics
    Wang, Taoran
    Zhang, Weiwei
    Yang, Wenjuan
    Yu, Zeyi
    Xu, Gu
    Xu, Fan
    MOLECULES, 2024, 29 (17):
  • [10] Versatile Self-Assembled Molecule Enables High-Efficiency Wide-Bandgap Perovskite Solar Cells and Organic Solar Cells
    Wang, Wanhai
    Liu, Xin
    Wang, Juncheng
    Chen, Cong
    Yu, Jiangsheng
    Zhao, Dewei
    Tang, Weihua
    ADVANCED ENERGY MATERIALS, 2023, 13 (23)