Experimental study on fire characteristics of the bifurcated tunnel under multi-directional ventilation

被引:12
|
作者
Chen, Longfei [1 ]
Zhou, Shanxin [1 ]
Lan, Yujie [1 ]
Liu, Xinyi [1 ]
Yang, Yunping [1 ]
Li, Xiaosong [1 ,2 ]
Yan, Xineng [1 ]
Chen, Haifeng [1 ]
机构
[1] Southwest Jiaotong Univ, Dept Fire Protect Engn, Chengdu 610031, Peoples R China
[2] Sichuan Univ, Dept Secur, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Bifurcated tunnel; Fire; Multi -directional ventilation; Maximum temperature rise; Heat flux; THERMAL-RADIATION;
D O I
10.1016/j.ijthermalsci.2022.108072
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the increasing complexity of tunnel structures, the fire characteristics of traditional single-tube tunnels are not suitable for those with complex structures. Multi-directional ventilation is mostly used in underground interchange tunnels to prevent fire smoke spread to other tunnel sections. In this paper, by means of experi-mental analysis, the maximum temperature rise distribution beneath the ceiling and the longitudinal distribution of heat flux at the same height position with the fire source in the bifurcated tunnel under multi-directional ventilation are studied. The results show that when the longitudinal ventilation is only added to the main tunnel, the maximum temperature position beneath the ceiling shifts downstream along the longitudinal di-rection with the increase of the wind speed in the main tunnel. Under the multi-directional ventilation of the main tunnel and the branch tunnel, the maximum temperature position beneath the ceiling shifts along the transverse direction with the increase of the wind speed in the branch tunnel. Based on the dimensionless analysis, a model is proposed to predict the maximum temperature rise beneath the ceiling in the bifurcated tunnel under multi-directional ventilation. The heat flux at the same height position with the fire source first increases and then keeps relatively stable or decreases slightly as the wind speed of the main tunnel increases. In addition, for the smaller wind speed of the main tunnel, the heat flux increases with the wind speed of the branch tunnel. For the larger wind speed of the main tunnel, the heat flux no longer shows regular variations with the wind speed of the branch tunnel.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Experimental study on smoke characteristics of bifurcated tunnel fire
    Chen, Longfei
    Mao, Pengfei
    Zhang, Yuchun
    Xing, Shaoshuai
    Li, Tao
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2020, 98
  • [2] Experimental Investigation on Fire Smoke Temperature under Forced Ventilation Conditions in a Bifurcated Tunnel with Fires Situated in a Branch Tunnel
    Guo, Hanwen
    Yang, Zhengyuan
    Zhang, Peiyao
    Gao, Yunji
    Zhang, Yuchun
    FIRE-SWITZERLAND, 2023, 6 (12):
  • [3] Experimental study on the effects of branch tunnel ventilation on the smoke movement and temperature characteristics in bifurcated tunnel fires
    Jiao, Weibing
    Chen, Changkun
    Lei, Peng
    Zhang, Yulun
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 144
  • [4] Experimental study on smoke movement characteristics and control in branched tunnel fire under longitudinal ventilation
    Lei, Peng
    Chen, Changkun
    Zhao, Dongyue
    Journal of Railway Science and Engineering, 2022, 19 (07) : 2117 - 2124
  • [5] Wind tunnel and CFD study of the natural ventilation performance of a commercial multi-directional wind tower
    Calautit, John Kaiser
    Hughes, Ben Richard
    BUILDING AND ENVIRONMENT, 2014, 80 : 71 - 83
  • [6] Study on the influence of branch slope on smoke movement mechanism in bifurcated tunnel fire under natural ventilation
    Chen, Yinuo
    Jia, Jinzhang
    Tang, Jupeng
    Liu, Xiaogang
    Meng, Fankang
    Sun, Yiwen
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 59
  • [7] Experimental Study of Tunnel Fire with Natural Ventilation
    YUAN Zhong-yuan
    湖南大学学报(自然科学版), 2009, (S1) : 23 - 25
  • [8] Experimental Study of Tunnel Fire with Natural Ventilation
    YUAN ZhongyuanLEI BoCHEN PengyunSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengduSichuan China
    湖南大学学报(自然科学版), 2009, 36(S1) (自然科学版) : 23 - 25
  • [9] Experimental study of tunnel fire with natural ventilation
    Yuan, Zhong-Yuan
    Lei, Bo
    Chen, Peng-Yun
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2009, 36 (SUPPL.): : 23 - 25
  • [10] Experimental study on fire characteristics in cable compartment of utility tunnel with natural ventilation
    Bai, Z. P.
    Yao, H. W.
    Zhang, H. H.
    PLOS ONE, 2022, 17 (04):