FeMIP: detector-free feature matching for multimodal images with policy gradient

被引:5
|
作者
Di, Yide [1 ,3 ]
Liao, Yun [2 ,3 ]
Zhou, Hao [3 ]
Zhu, Kaijun [3 ]
Zhang, Yijia [1 ]
Duan, Qing [2 ]
Liu, Junhui [2 ]
Lu, Mingyu [1 ]
机构
[1] Dalian Maritime Univ, Sch informat Sci & technol, Dalian, Liaoning, Peoples R China
[2] Yunnan Univ, Natl Pilot Sch Software, Kunming, Yunnan, Peoples R China
[3] Yunnan Lanyi Network Technol Co, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature matching; Multimodal image; Transformer; Policy gradient; ATTENTION NETWORK;
D O I
10.1007/s10489-023-04659-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature matching for multimodal images is an important task in image processing. However, most methods perform image feature detection, description, and matching sequentially, resulting in a large loss, low matching accuracy, and slow performance. To tackle these challenges, we propose a detector-free method called FeMIP for feature matching of multimodal images. We design coarse matching and fine regression modules to implement accurate multimodal image feature matches in a coarse-to-fine manner. Furthermore, we add a novel data augmentation method enabling FeMIP to achieve feature matching faster and more accurately. The coarse-to-fine module automatically generates pixel-level labels on the original image, enabling FeMIP to perform pixel-level matching on data with only image-level labels. In addition, we use the principle of reinforcement learning to design a policy gradient method to improve the solution to the problem of discreteness in matching. Extensive experiments show that FeMIP has good generalization and achieves excellent matching performances. The code will be released at: https://github.com/LiaoYun0x0/FeMIP.
引用
收藏
页码:24068 / 24088
页数:21
相关论文
共 24 条
  • [1] FeMIP: detector-free feature matching for multimodal images with policy gradient
    Yide Di
    Yun Liao
    Hao Zhou
    Kaijun Zhu
    Yijia Zhang
    Qing Duan
    Junhui Liu
    Mingyu Lu
    Applied Intelligence, 2023, 53 : 24068 - 24088
  • [2] LoFTR: Detector-Free Local Feature Matching with Transformers
    Sun, Jiaming
    Shen, Zehong
    Wang, Yuang
    Bao, Hujun
    Zhou, Xiaowei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8918 - 8927
  • [3] GRiD: Guided Refinement for Detector-Free Multimodal Image Matching
    Liu, Yuyan
    He, Wei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5892 - 5906
  • [4] Local feature matching from detector-based to detector-free: a survey
    Liao, Yun
    Di, Yide
    Zhu, Kaijun
    Zhou, Hao
    Lu, Mingyu
    Zhang, Yijia
    Duan, Qing
    Liu, Junhui
    APPLIED INTELLIGENCE, 2024, 54 (05) : 3954 - 3989
  • [5] Detector-Free Feature Matching for Optical and SAR Images Based on a Two-Step Strategy
    Xiang, Yuming
    Jiang, Liting
    Wang, Feng
    You, Hongjian
    Qiu, Xiaolan
    Fu, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] Local feature matching from detector-based to detector-free: a survey
    Yun Liao
    Yide Di
    Kaijun Zhu
    Hao Zhou
    Mingyu Lu
    Yijia Zhang
    Qing Duan
    Junhui Liu
    Applied Intelligence, 2024, 54 : 3954 - 3989
  • [7] ContextMatcher: Detector-Free Feature Matching With Cross-Modality Context
    Li, Dongyue
    Du, Songlin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 7922 - 7934
  • [8] ASpanFormer: Detector-Free Image Matching with Adaptive Span Transformer
    Chen, Hongkai
    Luo, Zixin
    Zhou, Lei
    Tian, Yurun
    Zhen, Mingmin
    Fang, Tian
    McKinnon, David
    Tsin, Yanghai
    Quan, Long
    COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 : 20 - 36
  • [9] EcoMatcher: Efficient Clustering Oriented Matcher for Detector-Free Image Matching
    Chen, Peiqi
    Yu, Lei
    Wan, Yi
    Zhang, Yongjun
    Wang, Jian
    Zhong, Liheng
    Chen, Jingdong
    Yang, Ming
    COMPUTER VISION - ECCV 2024, PT XXXVII, 2025, 15095 : 344 - 360
  • [10] Coarse TRVO: A Robust Visual Odometry with Detector-Free Local Feature
    Gao, Yuhang
    Zhao, Long
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (05) : 731 - 739