A general approach for Parisian stopping times under Markov processes

被引:6
|
作者
Zhang, Gongqiu [1 ]
Li, Lingfei [2 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Parisian stopping time; Parisian options; Parisian ruin probability; Markov chain approximation; Grid design; PRICING ASIAN OPTIONS; RUIN PROBABILITY; DIFFUSION-MODELS; FRAMEWORK; APPROXIMATION; VALUATION;
D O I
10.1007/s00780-023-00505-1
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a method based on continuous-time Markov chain (CTMC) approximation to compute the distribution of Parisian stopping times and to price options of Parisian style under general one-dimensional Markov processes. We prove the convergence of the method under a general setting and obtain sharp estimates of the convergence rate for diffusion models. Our theoretical analysis reveals how to design the grid of the CTMC to achieve faster convergence. Numerical experiments are conducted to demonstrate the accuracy and efficiency of our method for both diffusion and jump models. To show the versatility of our approach, we develop extensions for multi-sided Parisian stopping times, the joint distribution of Parisian stopping times and first passage times, Parisian bonds, regime-switching models and stochastic volatility models.
引用
收藏
页码:769 / 829
页数:61
相关论文
共 50 条
  • [1] A general approach for Parisian stopping times under Markov processes
    Gongqiu Zhang
    Lingfei Li
    Finance and Stochastics, 2023, 27 : 769 - 829
  • [2] Markov decision processes with constrained stopping times
    Horiguchi, M
    Kurano, M
    Yasuda, M
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 706 - 710
  • [3] STOPPING TIMES FOR RECURRENT MARKOV-PROCESSES
    BAXTER, JR
    CHACON, RV
    ILLINOIS JOURNAL OF MATHEMATICS, 1976, 20 (03) : 467 - 475
  • [4] Mixing times and hitting times for general Markov processes
    Anderson, Robert M.
    Duanmu, Haosui
    Smith, Aaron
    ISRAEL JOURNAL OF MATHEMATICS, 2023,
  • [5] Mixing times and hitting times for general Markov processes
    Anderson, Robert M.
    Duanmu, Haosui
    Smith, Aaron
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (02) : 759 - 834
  • [6] OPTIMAL STOPPING TIME, GENERAL THEORY OF PROCESSES AND MARKOV-PROCESSES
    BISMUT, JM
    SKALLI, B
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (04): : 301 - 313
  • [7] EPSILON-OPTIMALITY OF STOPPING TIMES IN OPTIMAL STOPPING OF STANDARD MARKOV-PROCESSES
    ENGELBERT, A
    MATHEMATISCHE NACHRICHTEN, 1975, 70 : 251 - 257
  • [8] On hitting times for general quantum Markov processes
    Laneve, Lorenzo
    Tacchino, Francesco
    Tavernelli, Ivano
    QUANTUM, 2023, 7
  • [9] Mixing and average mixing times for general Markov processes
    Anderson, Robert M.
    Duanmu, Haosui
    Smith, Aaron
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 541 - 552
  • [10] OPTIMAL STOPPING UNDER MODEL UNCERTAINTY: RANDOMIZED STOPPING TIMES APPROACH
    Belomestny, Denis
    Kraetschmer, Volker
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (02): : 1260 - 1295