Knowledge Graph Embeddings for ICU readmission prediction

被引:11
|
作者
Carvalho, Ricardo M. S. [1 ]
Oliveira, Daniela [1 ]
Pesquita, Catia [1 ]
机构
[1] Univ Lisbon, Fac Sci, LASIGE, Lisbon, Portugal
关键词
Semantic annotations; Ontologies; ICU readmission prediction; Machine learning; Knowledge Graph embeddings; ELECTRONIC HEALTH RECORDS; INTENSIVE-CARE-UNIT; ONTOLOGIES; OUTCOMES; QUALITY;
D O I
10.1186/s12911-022-02070-7
中图分类号
R-058 [];
学科分类号
摘要
Background Intensive Care Unit (ICU) readmissions represent both a health risk for patients,with increased mortality rates and overall health deterioration, and a financial burden for healthcare facilities. As healthcare became more data-driven with the introduction of Electronic Health Records (EHR), machine learning methods have been applied to predict ICU readmission risk. However, these methods disregard the meaning and relationships of data objects and work blindly over clinical data without taking into account scientific knowledge and context. Ontologies and Knowledge Graphs can help bridge this gap between data and scientific context, as they are computational artefacts that represent the entities of a domain and their relationships to each other in a formalized way. Methods and results We have developed an approach that enriches EHR data with semantic annotations to ontologies to build a Knowledge Graph. A patient's ICU stay is represented by Knowledge Graph embeddings in a contextualized manner, which are used by machine learning models to predict 30-days ICU readmissions. This approach is based on several contributions: (1) an enrichment of the MIMIC-III dataset with patient-oriented annotations to various biomedical ontologies; (2) a Knowledge Graph that defines patient data with biomedical ontologies; (3) a predictive model of ICU readmission risk that uses Knowledge Graph embeddings; (4) a variant of the predictive model that targets different time points during an ICU stay. Our predictive approaches outperformed both a baseline and state-of-the-art works achieving a mean Area Under the Receiver Operating Characteristic Curve of 0.827 and an Area Under the Precision-Recall Curve of 0.691. The application of this novel approach to help clinicians decide whether a patient can be discharged has the potential to prevent the readmission of 40% of Intensive Care Unit patients, without unnecessarily prolonging the stay of those who would not require it. Conclusion The coupling of semantic annotation and Knowledge Graph embeddings affords two clear advantages: they consider scientific context and they are able to build representations of EHR information of different types in a common format. This work demonstrates the potential for impact that integrating ontologies and Knowledge Graphs into clinical machine learning applications can have.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Knowledge Graph Embeddings for ICU readmission prediction
    Ricardo M. S. Carvalho
    Daniela Oliveira
    Catia Pesquita
    BMC Medical Informatics and Decision Making, 23
  • [2] A Survey on Knowledge Graph Embeddings for Link Prediction
    Wang, Meihong
    Qiu, Linling
    Wang, Xiaoli
    SYMMETRY-BASEL, 2021, 13 (03):
  • [3] Evaluating the Calibration of Knowledge Graph Embeddings for Trustworthy Link Prediction
    Safavi, Tara
    Koutra, Danai
    Meij, Edgar
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 8308 - 8321
  • [4] Explaining Link Prediction Systems based on Knowledge Graph Embeddings
    Rossi, Andrea
    Firmani, Donatella
    Merialdo, Paolo
    Teofili, Tommaso
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 2062 - 2075
  • [5] Ultrahyperbolic Knowledge Graph Embeddings
    Xiong, Bo
    Zhu, Shichao
    Nayyeri, Mojtaba
    Xu, Chengjin
    Pan, Shirui
    Zhou, Chuan
    Staab, Steffen
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2130 - 2139
  • [6] Bias in Knowledge Graph Embeddings
    Bourli, Styliani
    Pitoura, Evaggelia
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2020, : 6 - 10
  • [7] Prediction of adverse biological effects of chemicals using knowledge graph embeddings
    Myklebust, Erik B.
    Jimenez-Ruiz, Ernesto
    Chen, Jiaoyan
    Wolf, Raoul
    Tollefsen, Knut Erik
    SEMANTIC WEB, 2022, 13 (03) : 299 - 338
  • [8] Hypernetwork Knowledge Graph Embeddings
    Balazevic, Ivana
    Allen, Carl
    Hospedales, Timothy M.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 553 - 565
  • [9] Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction
    Zhang, Zhanqiu
    Cai, Jianyu
    Zhang, Yongdong
    Wang, Jie
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3065 - 3072
  • [10] Quaternion Knowledge Graph Embeddings
    Zhang, Shuai
    Tay, Yi
    Yao, Lina
    Liu, Qi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32