Numerical investigation of localization in two-dimensional quasiperiodic mosaic lattice

被引:2
|
作者
Wang, Hui-Hui [1 ,2 ]
Wang, Si-Si [1 ,3 ]
Yu, Yan [4 ,5 ]
Zhang, Biao [1 ,2 ]
Dai, Yi-Ming [1 ]
Chen, Hao-Can [1 ]
Zhang, Yi-Cai [1 ]
Zhang, Yan-Yang [1 ,2 ,3 ]
机构
[1] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
[2] Huangpu Res & Grad Sch Guangzhou Univ, Guangzhou 510700, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Chinese Acad Sci, Inst Semicond, SKLSM, POB 912, Beijing 100083, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum localization; quasiperiodic system; two dimension; scaling function; CONDUCTANCE DISTRIBUTION; SCALING THEORY; BETA-FUNCTION; ANDERSON; DIFFUSION; ABSENCE; MODEL; BAND;
D O I
10.1088/1361-648X/acb67c
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A one-dimensional lattice model with mosaic quasiperiodic potential is found to exhibit interesting localization properties, e.g. clear mobility edges (Wang et al 2020 Phys. Rev. Lett. 125 196604). We generalize this mosaic quasiperiodic model to a two-dimensional version, and numerically investigate its localization properties: the phase diagram from the fractal dimension of the wavefunction, the statistical and scaling properties of the conductance. Compared with disordered systems, our model shares many common features but also exhibits some different characteristics in the same dimensionality and the same universality class. For example, the sharp peak at g similar to 0 g limit of the universal scaling function beta resemble those behaviors of three-dimensional disordered systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Moire localization in two-dimensional quasiperiodic systems
    Huang, Biao
    Liu, W. Vincent
    PHYSICAL REVIEW B, 2019, 100 (14)
  • [2] THE ISING-MODEL OF THE TWO-DIMENSIONAL QUASIPERIODIC LATTICE
    DOROBA, A
    SOKALSKI, K
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1989, 152 (01): : 275 - 287
  • [3] NUMERICAL INVESTIGATION OF TWO-DIMENSIONAL CONFORMAL LATTICE FIELD-THEORIES
    SURANYI, P
    NUCLEAR PHYSICS B, 1988, 300 (02) : 289 - 300
  • [4] From topological phase to transverse Anderson localization in a two-dimensional quasiperiodic system
    Cheng, Shujie
    Asgari, Reza
    Xianlong, Gao
    PHYSICAL REVIEW B, 2023, 108 (02)
  • [5] One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges
    Wang, Yucheng
    Xia, Xu
    Zhang, Long
    Yao, Hepeng
    Chen, Shu
    You, Jiangong
    Zhou, Qi
    Liu, Xiong-Jun
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)
  • [6] Two-dimensional numerical investigation of a micro combustor
    Irani Rahaghi, A.
    Saidi, M.S.
    Saidi, M.H.
    Shafii, M.B.
    Scientia Iranica, 2010, 17 (6 B) : 433 - 442
  • [7] Numerical investigation of a two-dimensional Boussinesq system
    Chen, Min
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (04) : 1169 - 1190
  • [8] Two-Dimensional Numerical Investigation of a Micro Combustor
    Rahaghi, A. Irani
    Saidi, M. S.
    Saidi, M. H.
    Shafii, M. B.
    SCIENTIA IRANICA TRANSACTION B-MECHANICAL ENGINEERING, 2010, 17 (06): : 433 - 442
  • [9] Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems
    Bordia, Pranjal
    Lueschen, Henrik
    Scherg, Sebastian
    Gopalakrishnan, Sarang
    Knap, Michael
    Schneider, Ulrich
    Bloch, Immanuel
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [10] Shock wave filtering of two-dimensional CFRP X-lattice structures: A numerical investigation
    Iwata, Yoshimasa
    Yokozeki, Tomohiro
    COMPOSITE STRUCTURES, 2021, 265