Co-Rotating Vortices with N fold Symmetry for the Inviscid Surface Quasi-Geostrophic Equation

被引:0
|
作者
Godard-cadillac, Ludovic [1 ]
Gravejat, Philippe [2 ]
Smets, Didier [1 ]
机构
[1] Sorbonne Univ, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75005 Paris, France
[2] CY Cergy Paris Univ, Lab Math AGM, F-95302 Cergy pontoise, France
关键词
VORTEX PAIRS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a variational construction of special solutions to the generalized surface quasi-geostrophic equations. These solutions take the form of N vortex patches with N-fold symmetry, which are steady in a uniformly rotating frame. Moreover, we investigate their asymptotic properties when the size of the corresponding patches vanishes. In this limit, we prove these solutions to be a desingularization of N Dirac masses with the same intensity, located on the N vertices of a regular polygon rotating at a constant angular velocity.
引用
收藏
页码:603 / 650
页数:48
相关论文
共 50 条
  • [1] The interaction of two co-rotating quasi-geostrophic vortices in the vicinity of a surface buoyancy filament
    Reinaud, Jean N.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2018, 112 (02): : 130 - 155
  • [2] The critical merger distance between two co-rotating quasi-geostrophic vortices
    Reinaud, JN
    Dritschel, DG
    JOURNAL OF FLUID MECHANICS, 2005, 522 : 357 - 381
  • [3] TRAVELLING AND ROTATING SOLUTIONS TO THE GENERALIZED INVISCID SURFACE QUASI-GEOSTROPHIC EQUATION
    Ao, Weiwei
    Davila, Juan
    del Pino, Manuel
    Musso, Monica
    Wei, Juncheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6665 - 6689
  • [4] An inviscid regularization for the surface quasi-geostrophic equation
    Khouider, Boualem
    Titi, Edriss S.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (10) : 1331 - 1346
  • [5] POINT VORTICES FOR INVISCID GENERALIZED SURFACE QUASI-GEOSTROPHIC MODELS
    Geldhauser, Carina
    Romito, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2583 - 2606
  • [6] The lifespan of classical solutions for the inviscid Surface Quasi-geostrophic equation
    Castro, Angel
    Cordoba, Diego
    Zheng, Fan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (05): : 1583 - 1603
  • [7] Global existence for the regularized surface Quasi-geostrophic equation and its inviscid limits
    Li, Linrui
    Wang, Shu
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 11
  • [8] Smooth Travelling-Wave Solutions to the Inviscid Surface Quasi-Geostrophic Equation
    Gravejat, Philippe
    Smets, Didier
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (06) : 1744 - 1757
  • [9] Global existence for the regularized surface Quasi-geostrophic equation and its inviscid limits
    Linrui Li
    Shu Wang
    Boundary Value Problems, 2011
  • [10] The nonlinear evolution of two surface quasi-geostrophic vortices
    Carton, Xavier
    Reinaud, Jean N.
    Vic, Armand
    Gula, Jonathan
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2024, 118 (02): : 93 - 119