Deep learning for classification of thyroid nodules on ultrasound: validation on an independent dataset

被引:3
|
作者
Weng, Jingxi [1 ]
Wildman-Tobriner, Benjamin [2 ]
Buda, Mateusz [3 ]
Yang, Jichen [3 ,5 ]
Ho, Lisa M. [4 ]
Allen, Brian C. [4 ]
Ehieli, Wendy L. [4 ]
Miller, Chad M. [4 ]
Zhang, Jikai [3 ]
Mazurowski, Maciej A. [2 ]
机构
[1] Univ Florida, Dept Radiat Oncol, Gainesville, FL USA
[2] Duke Univ, Dept Radiol, Durham, NC USA
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[4] Duke Univ, Med Ctr, Dept Radiol, Durham, NC USA
[5] Duke Univ, Dept Elect & Comp Engn, 1809 Wrenn Rd, Durham, NC 27708 USA
关键词
Deep learning; Thyroid nodules; Malignancy; Classification; Validation;
D O I
10.1016/j.clinimag.2023.04.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: The purpose is to apply a previously validated deep learning algorithm to a new thyroid nodule ul-trasound image dataset and compare its performances with radiologists.Methods: Prior study presented an algorithm which is able to detect thyroid nodules and then make malignancy classifications with two ultrasound images. A multi-task deep convolutional neural network was trained from 1278 nodules and originally tested with 99 separate nodules. The results were comparable with that of radiol-ogists. The algorithm was further tested with 378 nodules imaged with ultrasound machines from different manufacturers and product types than the training cases. Four experienced radiologists were requested to evaluate the nodules for comparison with deep learning.Results: The Area Under Curve (AUC) of the deep learning algorithm and four radiologists were calculated with parametric, binormal estimation. For the deep learning algorithm, the AUC was 0.69 (95% CI: 0.64-0.75). The AUC of radiologists were 0.63 (95% CI: 0.59-0.67), 0.66 (95% CI:0.61-0.71), 0.65 (95% CI: 0.60-0.70), and 0.63 (95%CI: 0.58-0.67).Conclusion: In the new testing dataset, the deep learning algorithm achieved similar performances with all four radiologists. The relative performance difference between the algorithm and the radiologists is not significantly affected by the difference of ultrasound scanner.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [1] Ultrasound Image Classification of Thyroid Nodules Based on Deep Learning
    Yang, Jingya
    Shi, Xiaoli
    Wang, Bing
    Qiu, Wenjing
    Tian, Geng
    Wang, Xudong
    Wang, Peizhen
    Yang, Jiasheng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [2] Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images
    Wei, Xi
    Gao, Ming
    Yu, Ruiguo
    Liu, Zhiqiang
    Gu, Qing
    Liu, Xun
    Zheng, Zhiming
    Zheng, Xiangqian
    Zhu, Jialin
    Zhang, Sheng
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [3] Deep learning on ultrasound images of thyroid nodules
    Sharifi, Yasaman
    Bakhshali, Mohamad Amin
    Dehghani, Toktam
    DanaiAshgzari, Morteza
    Sargolzaei, Mahdi
    Eslami, Saeid
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 636 - 655
  • [4] Classification of Thyroid Nodules by Using Deep Learning Radiomics Based on Ultrasound Dynamic Video
    Zhang, Chunquan
    Liu, Dan
    Huang, Long
    Zhao, Yu
    Chen, Lili
    Guo, Youmin
    JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (12) : 2993 - 3002
  • [5] Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning
    Yang, Min
    Yee, Austin Lin
    Yu, Jiafeng
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (02)
  • [6] Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study
    Guan, Qing
    Wang, Yunjun
    Du, Jiajun
    Qin, Yu
    Lu, Hongtao
    Xiang, Jun
    Wang, Fen
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (07)
  • [7] An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning
    Hou, Xiaowen
    Hua, Menglei
    Zhang, Wei
    Ji, Jianxin
    Zhang, Xuan
    Jiang, Huiru
    Li, Mengyun
    Wu, Xiaoxiao
    Zhao, Wenwen
    Sun, Shuxin
    Cao, Lei
    Wang, Liuying
    SCIENTIFIC DATA, 2024, 11 (01)
  • [8] Detection of Thyroid Nodules with Ultrasound Images Based on Deep Learning
    Yu, Xia
    Wang, Hongjie
    Ma, Liyong
    CURRENT MEDICAL IMAGING, 2020, 16 (02) : 174 - 180
  • [9] Hierarchical Deep Learning Networks for Classification of Ultrasonic Thyroid Nodules
    Wang, Bo
    Yuan, Fengqiang
    Lv, Zhiwei
    He, Ying
    Chen, Zongren
    Hu, Jianhua
    Yu, Jun
    Zheng, Shuzhao
    Liu, Hai
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (04)
  • [10] ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules
    Chen, Lu
    Chen, Huaqiang
    Pan, Zhikai
    Xu, Sheng
    Lai, Guangsheng
    Chen, Shuwen
    Wang, Shuihua
    Gu, Xiaodong
    Zhang, Yudong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (01): : 361 - 382