A potential of iron slag-based soil amendment as a suppressor of greenhouse gas (CH4 and N2O) emissions in rice paddy

被引:2
|
作者
Galgo, Snowie Jane C. [1 ,2 ]
Canatoy, Ronley C. [3 ]
Lim, Ji Yeon [1 ]
Park, Hyon Chol [4 ]
Kim, Pil Joo [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, BK21 Program, Div Appl Life Sci, Jinju, South Korea
[2] Gyeongsang Natl Univ, Inst Agr & Life Sci, Jinju, South Korea
[3] Cent Mindanao Univ, Coll Agr, Dept Soil Sci, Maramag, Philippines
[4] POSCO Co Ltd, Pohang, South Korea
基金
新加坡国家研究基金会;
关键词
silicate fertilizer; methane; nitrous oxide; electron transfer; iron; NITROUS-OXIDE PRODUCTION; SILICATE FERTILIZER; CROPPING SYSTEMS; DENITRIFICATION; OXIDATION; NITRIFICATION; ACCUMULATION; REDUCTION; INTENSITY; BACTERIA;
D O I
10.3389/fenvs.2024.1290969
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Iron slag-based silicate fertilizer (SF) has been utilized as a soil amendment in rice paddy fields for over 50 years. SF, which contains electron acceptors such as oxidized iron (Fe3+) compounds, is known to reduce methane (CH4) emissions, which have a global warming potential (GWP) of 23, higher than that of carbon dioxide (CO2). However, the dynamics of nitrous oxide (N2O), which has a GWP of 265, were questionable. Since the reduced Fe (Fe2+) can react as an electron donor, SF application might suppress N2O emissions by progressing N2O into nitrogen gas (N-2) during the denitrification process. To verify the influence of SF application on two major greenhouse gas (GHG) dynamics during rice cultivation, three different kinds of SF were prepared by mixing iron rust (>99%, Fe2O3) as an electron acceptor with different ratios (0, 2.5, and 5%) and applied at the recommended level (1.5 Mg ha(-1)) for rice cultivation. SF application was effective in decreasing CH4 emissions in the earlier rice cropping season, and seasonal CH4 flux was more highly decreased with increasing the mixing ratio of iron rust from an average of 19% to 38%. Different from CH4 emissions, approximately 70% of seasonal N2O flux was released after drainage for rice harvesting. However, SF incorporation was very effective in decreasing N2O emissions by approximately 40% over the control. Reduced Fe2+ can be simultaneously oxidized into Fe3+ by releasing free electrons. The increased electron availability might develop more denitrification processes into N-2 gas rather than NO and N2O and then decrease N2O emissions in the late rice cultivation season. We could find evidence of a more suppressed N2O flux by applying the electron acceptor-added SFs (SF2.5 and SF5.0) to a 49%-56% decrease over the control. The SF application was effective in increasing rice productivity, which showed a negative-quadratic response to the available silicate (SiO2) concentration in the soil at the harvesting stage. Grain yield was maximized at approximately 183 mg kg(-1) of the available SiO2 concentration in the Korean rice paddy, with a 16% increase over no-SF application. Consequently, SF has an attractive potential as a soil amendment in rice paddy to decrease GHG emission impacts and increase rice productivity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effects of fertilization on microbial abundance and emissions of greenhouse gases (CH4 and N2O) in rice paddy fields
    Fan, Xianfang
    Yu, Haiyang
    Wu, Qinyan
    Ma, Jing
    Xu, Hua
    Yang, Jinghui
    Zhuang, Yiqing
    ECOLOGY AND EVOLUTION, 2016, 6 (04): : 1054 - 1063
  • [2] Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar
    Zhou, Beibei
    Feng, Yanfang
    Wang, Yueman
    Yang, Linzhang
    Xue, Lihong
    Xing, Baoshan
    CHEMOSPHERE, 2018, 204 : 474 - 482
  • [3] Greenhouse impacts of anthropogenic CH4 and N2O emissions in Finland
    Pipatti, R
    Savolainen, I
    Sinisalo, J
    ENVIRONMENTAL MANAGEMENT, 1996, 20 (02) : 219 - 233
  • [4] CH4 and N2O emissions response to controlled irrigation of paddy fields
    Hou, H. (houhuijing@163.com), 1600, Chinese Society of Agricultural Engineering (28):
  • [5] Influence of controlled irrigation on CH4 and N2O emissions from paddy fields and subsequent greenhouse effect
    Peng, Shi-Zhang
    Yang, Shi-Hong
    Xu, Jun-Zeng
    Shuikexue Jinzhan/Advances in Water Science, 2010, 21 (02): : 235 - 240
  • [6] Greenhouse gas (CO2, CH4, and N2O) emissions after abandonment of agriculture
    El-Hawwary, Alaa
    Brenzinger, Kristof
    Lee, Hyo Jung
    Veraart, Annelies J.
    Morrien, Elly
    Schloter, Michael
    van der Putten, Wim H.
    Bodelier, Paul L. E.
    Ho, Adrian
    BIOLOGY AND FERTILITY OF SOILS, 2022, 58 (05) : 579 - 591
  • [7] Greenhouse gas (CO2, CH4, and N2O) emissions after abandonment of agriculture
    Alaa El-Hawwary
    Kristof Brenzinger
    Hyo Jung Lee
    Annelies J. Veraart
    Elly Morriën
    Michael Schloter
    Wim H. van der Putten
    Paul L. E. Bodelier
    Adrian Ho
    Biology and Fertility of Soils, 2022, 58 : 579 - 591
  • [8] Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil
    Zhu B.
    Yi L.
    Hu Y.
    Zeng Z.
    Tang H.
    Xiao X.
    Yang G.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2011, 27 (12): : 241 - 245
  • [9] Azolla cover significantly decreased CH4 but not N2O emissions from flooding rice paddy to atmosphere
    Kimani, Samuel Munyaka
    Cheng, Weiguo
    Kanno, Takamori
    Nguyen-Sy, Toan
    Abe, Ryoko
    Oo, Aung Zaw
    Tawaraya, Keitaro
    Sudo, Shigeto
    SOIL SCIENCE AND PLANT NUTRITION, 2018, 64 (01) : 68 - 76
  • [10] Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions: A whole growth period investigation
    Chen, Danyan
    Zhou, Yibo
    Xu, Cong
    Lu, Xinyu
    Liu, Yang
    Yu, Shan
    Feng, Yanfang
    ENVIRONMENTAL POLLUTION, 2021, 274