Identification of multiple myeloma resistant cells using machine learning and laser tweezers Raman spectroscopy

被引:0
|
作者
Xie, Xingfei [1 ]
Wu, Ziqing [1 ]
Yuan, Hang [2 ]
Zhou, Zhehai [1 ]
Zhang, Pengfei [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Key Lab, Minist Educ Optoelect Measurement Technol & Instr, Beijing 100192, Peoples R China
[2] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple Myeloma; drug resistance detection; laser tweezers Raman spectroscopy; artificial intelligence algorithm; DRUG-RESISTANCE; ERK;
D O I
10.1117/12.2686545
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiple myeloma may develop resistance to certain drugs during chemotherapy, which have a fatal impact on treatment efficacy. At present, the drug resistance detection methods for multiple myeloma, such as proteomic identification and clone formation analysis, are relatively complex, and the accuracy and detection time are not ideal. In our work, laser tweezers Raman spectroscopy was used to collect 412 groups of spectra of two kinds of cells, namely, MM.1R and MM.1S, which were respectively resistant to dexamethasone and sensitive to dexamethasone. We selected support vector machine, random forest, linear discriminant analysis and other algorithms to train the pretreated Raman spectra, and the recognition accuracy on the test set was above 95%. This result shows that the combination of laser tweezers Raman spectroscopy and artificial intelligence algorithm can quickly detect drug resistance of cancer cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Accurate identification of living Bacillus spores using laser tweezers Raman spectroscopy and deep learning
    Du, Fusheng
    He, Lin
    Lu, Xiaoxu
    Li, Yong-qing
    Yuan, Yufeng
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 289
  • [2] Identification of single bacterial cells in aqueous solution using conflocal laser tweezers Raman spectroscopy
    Xie, C
    Mace, J
    Dinno, MA
    Li, YQ
    Tang, W
    Newton, RJ
    Gemperline, PJ
    ANALYTICAL CHEMISTRY, 2005, 77 (14) : 4390 - 4397
  • [3] Blood identification at the single-cell level based on a combination of laser tweezers Raman spectroscopy and machine learning
    Wang, Ziqi
    Liu, Yiming
    Lu, Weilai
    Fu, Yu Vincent
    Zhou, Zhehai
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (12) : 7568 - 7581
  • [4] Automated analysis of single cells using Laser Tweezers Raman Spectroscopy
    Casabella, S.
    Scully, P.
    Goddard, N.
    Gardner, P.
    ANALYST, 2016, 141 (02) : 689 - 696
  • [5] Laser tweezers Raman spectroscopy combined with machine learning for diagnosis of Alzheimer's disease
    Lin, Manman
    Ou, Haisheng
    Zhang, Peng
    Meng, Yanhong
    Wang, Shenghao
    Chang, Jing
    Shen, Aiguo
    Hu, Jiming
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 280
  • [6] Laser tweezers Raman spectroscopy combined with machine learning for diagnosis of Alzheimer's disease
    Lin, Manman
    Ou, Haisheng
    Zhang, Peng
    Meng, Yanhong
    Wang, Shenghao
    Chang, Jing
    Shen, Aiguo
    Hu, Jiming
    Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280
  • [7] Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy
    Jia, Wenguang
    Chen, Ping
    Chen, Wenqiang
    Li, Yongqing
    MEDICINE, 2018, 97 (39)
  • [8] Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring
    Zhang, Dechun
    Chen, Xianling
    Lin, Jia
    Jiang, Shiyan
    Fan, Min
    Liu, Nenrong
    Huang, Zufang
    Wang, Jing
    ANALYTICAL CHEMISTRY, 2025, 97 (07) : 4101 - 4110
  • [9] Visible Particle Identification Using Raman Spectroscopy and Machine Learning
    Han Sheng
    Yinping Zhao
    Xiangan Long
    Liwen Chen
    Bei Li
    Yiyan Fei
    Lan Mi
    Jiong Ma
    AAPS PharmSciTech, 23
  • [10] Visible Particle Identification Using Raman Spectroscopy and Machine Learning
    Sheng, Han
    Zhao, Yinping
    Long, Xiangan
    Chen, Liwen
    Li, Bei
    Fei, Yiyan
    Mi, Lan
    Ma, Jiong
    AAPS PHARMSCITECH, 2022, 23 (06)