Spectral Batch Normalization: Normalization in the Frequency Domain

被引:0
|
作者
Cakaj, Rinor [1 ,2 ]
Mehnert, Jens [1 ]
Yang, Bin [3 ]
机构
[1] Robert Bosch GmbH, Signal Proc, D-71229 Leonberg, Germany
[2] Univ Stuttgart, D-71229 Leonberg, Germany
[3] Univ Stuttgart, ISS, D-70550 Stuttgart, Germany
关键词
NEURAL-NETWORKS;
D O I
10.1109/IJCNN54540.2023.10191931
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce spectral batch normalization (SBN), a novel effective method to improve generalization by normalizing feature maps in the frequency (spectral) domain. The activations of residual networks without batch normalization (BN) tend to explode exponentially in the depth of the network at initialization. This leads to extremely large feature map norms even though the parameters are relatively small. These explosive dynamics can be very detrimental to learning. BN makes weight decay regularization on the scaling factors gamma, beta approximately equivalent to an additive penalty on the norm of the feature maps, which prevents extremely large feature map norms to a certain degree. It was previously shown that preventing explosive growth at the final layer at initialization and during training in ResNets can recover a large part of Batch Normalization's generalization boost. However, we show experimentally that, despite the approximate additive penalty of BN, feature maps in deep neural networks (DNNs) tend to explode at the beginning of the training and that feature maps of DNNs contain large values during the whole training. This phenomenon also occurs in a weakened form in non-residual networks. Intuitively, it is not preferred to have large values in feature maps since they have too much influence on the prediction in contrast to other parts of the feature map. SBN addresses large feature maps by normalizing them in the frequency domain. In our experiments, we empirically show that SBN prevents exploding feature maps at initialization and large feature map values during the training. Moreover, the normalization of feature maps in the frequency domain leads to more uniform distributed frequency components. This discourages the DNNs to rely on single frequency components of feature maps. These, together with other effects (e.g. noise injection, scaling and shifting of the feature map) of SBN, have a regularizing effect on the training of residual and non-residual networks. We show experimentally that using SBN in addition to standard regularization methods improves the performance of DNNs by a relevant margin, e.g. ResNet50 on CIFAR-100 by 2.31%, on ImageNet by 0.71% (from 76.80% to 77.51%) and VGG19 on CIFAR-100 by 0.66%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spectral Normalization for Domain Adaptation
    Zhao, Liquan
    Liu, Yan
    INFORMATION, 2020, 11 (02)
  • [2] Adaptive Batch Normalization for practical domain adaptation
    Li, Yanghao
    Wang, Naiyan
    Shi, Jianping
    Hou, Xiaodi
    Liu, Jiaying
    PATTERN RECOGNITION, 2018, 80 : 109 - 117
  • [3] Domain-Specific Batch Normalization for Unsupervised Domain Adaptation
    Chang, Woong-Gi
    You, Tackgeun
    Seo, Seonguk
    Kwak, Suha
    Han, Bohyung
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7346 - 7354
  • [4] Frequency Domain Correspondence for Speaker Normalization
    Liu, Ming
    Zhou, Xi
    Hasegawa-Johnson, Mark
    Huang, Thomas S.
    Zhang, Zhengyou
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 45 - +
  • [5] VOWEL NORMALIZATION BY FREQUENCY WARPED SPECTRAL MATCHING
    MATSUMOTO, H
    WAKITA, H
    SPEECH COMMUNICATION, 1986, 5 (02) : 239 - 251
  • [6] Diminishing Batch Normalization
    Ma, Yintai
    Klabjan, Diego
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6544 - 6557
  • [7] Filtered Batch Normalization
    Horvath, Andras
    Al-afandi, Jalal
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6778 - 6785
  • [8] Decorrelated Batch Normalization
    Huang, Lei
    Yang, Dawei
    Lang, Bo
    Deng, Jia
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 791 - 800
  • [9] Understanding Batch Normalization
    Bjorck, Johan
    Gomes, Carla
    Selman, Bart
    Weinberger, Kilian Q.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [10] Unsupervised Batch Normalization
    Kocyigit, Mustafa Taha
    Sevilla-Lara, Laura
    Hospedales, Timothy M.
    Bilen, Hakan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3994 - 3999