Local descent to quasi-split even general spin groups

被引:0
|
作者
Kaplan, Eyal [1 ]
Lau, Jing Feng [2 ]
Liu, Baiying [3 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
[2] Singapore Univ Social Sci, 463 Clementi Rd, Singapore 599494, Singapore
[3] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
基金
以色列科学基金会;
关键词
Local descent; GSpin groups; Local Langlands functoriality; THETA-DISTINGUISHED REPRESENTATIONS; RANKIN-SELBERG INTEGRALS; SQUARE L-FUNCTION; AUTOMORPHIC REPRESENTATIONS; CLASSICAL-GROUPS; MODULAR-FORMS; DOUBLE COVERS; CUSP FORMS; WAVE-FRONT; THEOREM;
D O I
10.1007/s00209-023-03227-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n > 1 and let r be an irreducible unitary supercuspidal representation of GL(2n) over a local non-archimedean field. Assuming the twisted symmetric square L-function of r has a pole at s = 0, we construct the local descent of r to the corresponding quasi-split even general spin group GSpin(2n). We prove this local descent is generic, unitary, supercuspidal and multiplicity free. Its irreducible quotients are functorially related to r, in the analytic sense of a pole of a Rankin-Selberg type gamma-function.
引用
收藏
页数:29
相关论文
共 50 条