Hamiltonian simulation of quantum beats in radical pairs undergoing thermal relaxation on near-term quantum computers

被引:7
|
作者
Tolunay, Meltem [1 ,2 ]
Liepuoniute, Ieva [1 ]
Vyushkova, Mariya [3 ]
Jones, Barbara A. [1 ]
机构
[1] IBM Quantum, 650 Harry Rd, San Jose, CA 95120 USA
[2] Stanford Univ, Dept Elect Engn, 350 Jane Stanford Way, Stanford, CA 94305 USA
[3] Univ Notre Dame, Ctr Res Comp, 814 Flanner Hall, Notre Dame, IN 46556 USA
关键词
SPIN-SELECTIVE REACTIONS; CHEMICAL COMPASS; RECOMBINATION; ACT; COHERENCE; SPECTRA;
D O I
10.1039/d3cp00276d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum dynamics of the radical pair mechanism is a major driving force in quantum biology, materials science, and spin chemistry. The rich quantum physical underpinnings of the mechanism are determined by a coherent oscillation (quantum beats) between the singlet and triplet spin states and their interactions with the environment, which is challenging to experimentally explore and computationally simulate. In this work, we take advantage of quantum computers to simulate the Hamiltonian evolution and thermal relaxation of two radical pair systems undergoing the quantum beats phenomenon. We study radical pair systems with nontrivial hyperfine coupling interactions, namely, 9,10-octalin(+)/p-terphenyl-d(14) (PTP)(-) and 2,3-dimethylbutane (DMB)(+)/p-terphenyl-d(14) (PTP)(-) with one and two groups of magnetically equivalent nuclei, respectively. Thermal relaxation dynamics in these systems are simulated using three methods: Kraus channel representations, noise models on Qiskit Aer and the inherent qubit noise present on the near-term quantum hardware. By leveraging the inherent qubit noise, we are able to simulate the noisy quantum beats in the two radical pair systems better than with any classical approximation or quantum simulator. While classical simulations of paramagnetic relaxation grow errors and uncertainties as a function of time, near-term quantum computers can match the experimental data throughout its time evolution, showcasing their unique suitability and future promise in simulating open quantum systems in chemistry.
引用
收藏
页码:15115 / 15134
页数:21
相关论文
共 50 条
  • [1] Hamiltonian simulation algorithms for near-term quantum hardware
    Clinton, Laura
    Bausch, Johannes
    Cubitt, Toby
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Hamiltonian simulation algorithms for near-term quantum hardware
    Laura Clinton
    Johannes Bausch
    Toby Cubitt
    Nature Communications, 12
  • [3] Towards solving the BCS Hamiltonian gap in near-term quantum computers
    Sa, Nahum
    Oliveira, Ivan S.
    Roditi, Itzhak
    RESULTS IN PHYSICS, 2023, 44
  • [4] Digital quantum simulation of dynamical topological invariants on near-term quantum computers
    Chang, Huai-Chun
    Hsu, Hsiu-Chuan
    QUANTUM INFORMATION PROCESSING, 2022, 21 (01)
  • [5] Digital quantum simulation of dynamical topological invariants on near-term quantum computers
    Huai-Chun Chang
    Hsiu-Chuan Hsu
    Quantum Information Processing, 2022, 21
  • [6] Quantum simulations of materials on near-term quantum computers
    He Ma
    Marco Govoni
    Giulia Galli
    npj Computational Materials, 6
  • [7] Quantum simulations of materials on near-term quantum computers
    Ma, He
    Govoni, Marco
    Galli, Giulia
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [8] Quantum chemistry as a benchmark for near-term quantum computers
    McCaskey, Alexander J.
    Parks, Zachary P.
    Jakowski, Jacek
    Moore, Shirley V.
    Morris, Titus D.
    Humble, Travis S.
    Pooser, Raphael C.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [9] Quantum chemistry as a benchmark for near-term quantum computers
    Alexander J. McCaskey
    Zachary P. Parks
    Jacek Jakowski
    Shirley V. Moore
    Titus D. Morris
    Travis S. Humble
    Raphael C. Pooser
    npj Quantum Information, 5
  • [10] Quantum Natural Language Processing on Near-Term Quantum Computers
    Meichanetzidis, K.
    De Felice, G.
    Toumi, A.
    Coecke, B.
    Gogioso, S.
    Chiappori, N.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (340): : 213 - 229