A Fe3O4/ZnFe2O4/ZnS/C composite is synthesized through a facile thermal decomposition method under an oxygen insufficient condition with the leaching liquor of ammonium jarosite residue and sucrose as raw materials. It reveals that the sucrose dosage (with nFe:nsucrose of 1:0, 1:1, 1:2, and 1:3, respectively) has a crucial impact on the microstructure, composition, and lithium storage property of the prepared samples. Particularly, the sample prepared with the nFe:nsucrose of 1:2 (labeled as FZ-2) has a porous structure in which nanosized Fe3O4, ZnFe2O4, and ZnS are embedded in the carbon matrix. Due to the porous mor-phology and synergistic effects of different components in the sample, this Fe3O4/ZnFe2O4/ZnS/C composite exhibits high lithium storage activity, superior cycling stability (928 mAh g-1 after 300 cycles at 500 mA g-1), and excellent high-rate capability (371 mAh g-1 at 5000 mA g-1). Lithium storage kinetics analysis demonstrates that the Fe3O4/ZnFe2O4/ZnS/C has much lower electrochemical reaction resistance, smaller polarization, faster Li+ diffusivity, and more remarkable pseudocapacitive behavior than the Fe2O3/ ZnFe2O4 counterpart. This work realizes the low-cost and facile fabrication of high-valued anode material for LIBs and the comprehensive utilization of Fe, Zn, and S resource in jarosite residue, achieving the in-terdisciplinary between resource recovery and electrochemical energy storage.(c) 2023 Elsevier B.V. All rights reserved.