Deep learning-based concrete defects classification and detection using semantic segmentation

被引:29
|
作者
Arafin, Palisa [1 ]
Billah, A. H. M. Muntasir [2 ,4 ]
Issa, Anas [3 ]
机构
[1] Lakehead Univ, Dept Civil Engn, Thunder Bay, ON, Canada
[2] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[3] United Arab Emirates Univ, Dept Civil & Environm Engn, Abu Dhabi, U Arab Emirates
[4] Univ Calgary, Dept Civil Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Concrete defects; convolutional neural network; semantic segmentation; encoder-decoder model; structural health monitoring; STRUCTURAL DAMAGE DETECTION; CRACK DETECTION; NEURAL-NETWORK; IMAGE;
D O I
10.1177/14759217231168212
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models-Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers-stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates-0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates-0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.
引用
收藏
页码:383 / 409
页数:27
相关论文
共 50 条
  • [1] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Lee, Donghan
    Kim, Jeongho
    Lee, Daewoo
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2019, 20 (01) : 287 - 299
  • [2] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Donghan Lee
    Jeongho Kim
    Daewoo Lee
    International Journal of Aeronautical and Space Sciences, 2019, 20 : 287 - 299
  • [3] A Deforestation Detection Network Using Deep Learning-Based Semantic Segmentation
    Das, Pradeep Kumar
    Sahu, Adyasha
    Xavy, Dias V.
    Meher, Sukadev
    IEEE SENSORS LETTERS, 2024, 8 (01) : 1 - 4
  • [4] Deep learning-based framework for tumour detection and semantic segmentation
    Kot, Estera
    Krawczyk, Zuzanna
    Siwek, Krzysztof
    Krolicki, Leszek
    Czwarnowski, Piotr
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (03)
  • [5] Deep Learning-based Semantic Segmentation for Crack Detection on Marbles
    Akosman, Sahin Alp
    Oktem, Mert
    Moral, Ozge Taylan
    Kilic, Volkan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [6] Deforestation detection using deep learning-based semantic segmentation techniques: a systematic review
    Jelas, Imran Md
    Zulkifley, Mohd Asyraf
    Abdullah, Mardina
    Spraggon, Martin
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2024, 7
  • [7] Pixelwise asphalt concrete pavement crack detection via deep learning-based semantic segmentation method
    Huyan, Ju
    Ma, Tao
    Li, Wei
    Yang, Handuo
    Xu, Zhengchao
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (08):
  • [8] Review of Deep Learning-Based Semantic Segmentation
    Zhang Xiangfu
    Jian, Liu
    Shi Zhangsong
    Wu Zhonghong
    Zhi, Wang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [9] Crack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep Learning
    Yamane, Tatsuro
    Chun, Pang-jo
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2020, 18 (09) : 493 - 504
  • [10] Deep learning-based detection, classification, and localization of defects in semiconductor processes
    Patel, Dhruv, V
    Bonam, Ravi
    Oberai, Assad A.
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2020, 19 (02):