Enhancement of Piezoelectricity by Novel Poling Method of the Rare-Earth Modified BiFeO3-BaTiO3 Lead-Free Ceramics

被引:20
|
作者
Habib, Muhammad [1 ]
Zhou, Xuefan [1 ]
Tang, Lin [1 ]
Xue, Guoliang [1 ]
Rahman, Attaur [2 ]
Akram, Fazli [3 ]
Zhang, Dou [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Anhui Polytech Univ, Sch Mat Sci & Engn, Wuhu 241000, Peoples R China
[3] Clark Atlanta Univ, Dept Chem, Atlanta, GA 30314 USA
关键词
BiFeO3-BaTiO3; donor-doping; lead-free piezoceramics; magnetic poling; rare-earth; TEMPERATURE STABILITY; ELECTRICAL-PROPERTIES; FREE PIEZOCERAMICS; CURIE-TEMPERATURE; STRAIN; DOPANTS; ND;
D O I
10.1002/aelm.202201210
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In piezoceramics, the Curie temperature (T-C) and piezoelectric coefficient (d(33)) are often inversely proportional, so it is very difficult to optimize high piezoelectricity and T-C simultaneously. In addition, the high and temperature-insensitive piezoelectric strain coefficient (d(33)*) with small hysteresis is also a longstanding obstacle in the development of lead-free ceramics. In this work, a facile approach of donor doping strategy is adopted to replace Ba2+ with Yb3+, Y3+, Sm3+, and Nd3+ as a result, a high T-C of 450 degrees C and outstanding d(33) of 422-436 pC N-1 is achieved by a novel magnetic poling method. Thermally-stable and outstanding piezoelectric strain performance (d(33)* approximate to 520-550 pm V-1 and Delta S-T approximate to 10%) with small strain hysteresis (H < 20%) results are highly encourageable in lead-free ceramics. The main factors contributing to high piezoelectricity are the morphotropic phase boundary, suppression of defect charges by donor doping, thermal quenching, mesoscale nanodomain size, and novel poling method. The excellent piezoelectric performance and high T-C of this work are superior to those of state-of-the-art piezoceramics. The synergistic approaches of compositional design strategy and novel poling process in this work are highly beneficial for temperature-insensitive piezoelectric sensor and actuator applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Synergistic approach for enhancement of piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics
    Iqbal, Qamar
    Habib, Muhammad
    Alzaid, Meshal
    Ahmad, Pervaiz
    Khan, Muhammad Tahir
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [2] Phase and domain engineering strategy for enhancement of piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics
    Habib, Muhammad
    Zhou, Xuefan
    Tang, Lin
    Xue, Guoliang
    Akram, Fazli
    Alzaid, Meshal
    Zhang, Dou
    JOURNAL OF MATERIOMICS, 2023, 9 (05) : 920 - 929
  • [3] Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics
    Zheng, Qiaoji
    Luo, Lingling
    Lam, Kwok Ho
    Jiang, Na
    Guo, Yongquan
    Lin, Dunmin
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (18)
  • [4] Piezoelectric performance of Zr-modified lead-free BiFeO3-BaTiO3 ceramics
    Habib, Muhammad
    Iqbal, Muhammad Javid
    Lee, Myang Hwan
    Kim, Da Jeong
    Akram, Fazli
    Gul, Mah
    Zeb, Aurang
    Rehman, Ihsan Ur
    Kim, Myong-Ho
    Song, Tae Kwon
    MATERIALS RESEARCH BULLETIN, 2022, 146
  • [5] Hard piezoelectric properties of lead-free BiFeO3-BaTiO3 ceramics
    Lee, Myang Hwan
    Choi, Hae In
    Kim, Da Jeong
    Kim, Ji Su
    Song, Tae Kwon
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (01) : 244 - 252
  • [6] Defects dipoles control strategy for temperature-insensitive piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics
    Habib, Muhammad
    Akram, Fazli
    Rahman, Attaur
    Ahmad, Pervaiz
    Iqbal, Muhammad Javid
    Liu, Qiong
    Zeb, Aurang
    Zhang, Dou
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 287
  • [7] Defects dipoles control strategy for temperature-insensitive piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics
    Habib, Muhammad
    Akram, Fazli
    Rahman, Attaur
    Ahmad, Pervaiz
    Iqbal, Muhammad Javid
    Liu, Qiong
    Zeb, Aurang
    Zhang, Dou
    Materials Chemistry and Physics, 2022, 287
  • [8] Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth
    Qin, Hailan
    Zhao, Jianwei
    Chen, Xiaoxin
    Li, Hongtian
    Wang, Shenghao
    Du, Yuxiao
    Zhou, Huanfu
    Li, Peifeng
    Wang, Dawei
    MICROSTRUCTURES, 2023, 3 (04):
  • [9] Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics
    Wang, Ge
    Fan, Zhongming
    Murakami, Shunsuke
    Lu, Zhilun
    Hall, David A.
    Sinclair, Derek C.
    Feteira, Antonio
    Tan, Xiaoli
    Jones, Jacob L.
    Kleppe, Annette K.
    Wang, Dawei
    Reaney, Ian M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (37) : 21254 - 21263
  • [10] Enhanced piezoelectricity in 0.7BiFeO3-0.3BaTiO3 lead-free ceramics: Distinct effect of poling engineering
    Song, Aizhen
    Tang, Yu-Cheng
    Li, Hezhang
    Wang, Ning
    Zhao, Lei
    Pei, Jun
    Zhang, Bo-Ping
    JOURNAL OF MATERIOMICS, 2023, 9 (05) : 971 - 979