The dynamical tides of spinning Newtonian stars

被引:6
|
作者
Pnigouras, P. [1 ,2 ,3 ,4 ]
Gittins, F. [5 ]
Nanda, A. [6 ,7 ]
Andersson, N. [5 ]
Jones, D., I [5 ]
机构
[1] Univ Alicante, Dept Fis Aplicada, Campus San Vicente Del Raspeig, E-03690 Alicante, Spain
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] Sez INFN Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[4] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
[5] Univ Southampton, Math Sci & STAG Res Ctr, Southampton SO17 1BJ, England
[6] Indian Inst Sci Educ & Res, Dr Homi Bhabha Rd, Pune 4110008, India
[7] Univ Tokyo, Res Ctr Early Universe RESCEU, Tokyo 1130033, Japan
关键词
asteroseismology; dense matter; equation of state; gravitation; gravitational waves; hydrodynamics; EQUATION-OF-STATE; ROTATING NEUTRON-STARS; RESONANT TIDAL EXCITATION; GRAVITATIONAL-WAVES; PARAMETER-ESTIMATION; OSCILLATION MODES; BODY; CONSTRAINTS; MASS; DEFORMABILITY;
D O I
10.1093/mnras/stad3593
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We carefully develop the framework required to model the dynamical tidal response of a spinning neutron star in an inspiralling binary system, in the context of Newtonian gravity, making sure to include all relevant details and connections to the existing literature. The tidal perturbation is decomposed in terms of the normal oscillation modes, used to derive an expression for the effective Love number which is valid for any rotation rate. In contrast to previous work on the problem, our analysis highlights subtle issues relating to the orthogonality condition required for the mode-sum representation of the dynamical tide and shows how the prograde and retrograde modes combine to provide the overall tidal response. Utilizing a slow-rotation expansion, we show that the dynamical tide (the effective Love number) is corrected at first order in rotation, whereas in the case of the static tide (the static Love number) the rotational corrections do not enter until second order.
引用
收藏
页码:8409 / 8428
页数:20
相关论文
共 50 条
  • [1] Dynamical tides during the inspiral of rapidly spinning neutron stars: Solutions beyond mode resonance
    Yu, Hang
    Arras, Phil
    Weinberg, Nevin N.
    PHYSICAL REVIEW D, 2024, 110 (02)
  • [2] Dynamical tides in rotating binary stars
    Lai, D
    ASTROPHYSICAL JOURNAL, 1997, 490 (02): : 847 - 862
  • [3] DYNAMICAL TIDES IN ROTATING PLANETS AND STARS
    Goodman, J.
    Lackner, C.
    ASTROPHYSICAL JOURNAL, 2009, 696 (02): : 2054 - 2067
  • [4] Dynamical tides in superfluid neutron stars
    Passamonti, A.
    Andersson, N.
    Pnigouras, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (01) : 1494 - 1510
  • [5] Dynamical tides in neutron stars: the impact of the crust
    Passamonti, A.
    Andersson, N.
    Pnigouras, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (01) : 1273 - 1293
  • [6] Gravitoelectric dynamical tides at second post-Newtonian order
    Mandal M.K.
    Mastrolia P.
    Silva H.O.
    Patil R.
    Steinhoff J.
    Journal of High Energy Physics, 2023 (11)
  • [7] Zahn's theory of dynamical tides and its application to stars
    Chernov, S. V.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2017, 43 (06): : 429 - 437
  • [8] Zahn’s theory of dynamical tides and its application to stars
    S. V. Chernov
    Astronomy Letters, 2017, 43 : 429 - 437
  • [9] Orbital evolution by dynamical tides in solar type stars - Application to binary stars and planetary orbits
    Witte, MG
    Savonije, GJ
    ASTRONOMY & ASTROPHYSICS, 2002, 386 (01) : 222 - 236
  • [10] Dynamical bar-mode instability in spinning bosonic stars
    Di Giovanni, Fabrizio
    Sanchis-Gual, Nicolas
    Cerda-Duran, Pablo
    Zilhao, Miguel
    Herdeiro, Carlos
    Font, Jose A.
    Radu, Eugen
    PHYSICAL REVIEW D, 2020, 102 (12)