Deep learning-based COVID-19 diagnosis using CT scans with laboratory and physiological parameters

被引:1
|
作者
Sameer, Humam Adnan [1 ]
Mutlag, Ammar Hussein [1 ]
Gharghan, Sadik Kamel [1 ]
机构
[1] Middle Tech Univ, Elect Engn Tech Coll, Baghdad, Iraq
关键词
convolutional neural network; computed tomography scan; COVID-19; deep learning; diagnosis; physiological parameters; AUTOMATED DETECTION; NEURAL-NETWORK;
D O I
10.1049/ipr2.12837
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The global economy has been dramatically impacted by COVID-19, which has spread to be a pandemic. COVID-19 virus affects the respiratory system, causing difficulty breathing in the patient. It is crucial to identify and treat infections as soon as possible. Traditional diagnostic reverse transcription-polymerase chain reaction (RT-PCR) methods require more time to find the infection. A high infection rate, slow laboratory analysis, and delayed test results caused the widespread and uncontrolled spread of the disease. This study aims to diagnose the COVID-19 epidemic by leveraging a modified convolutional neural network (CNN) to quickly and safely predict the disease's appearance from computed tomography (CT) scan images and a laboratory and physiological parameters dataset. A dataset representing 500 patients was used to train, test, and validate the CNN model with results in detecting COVID-19 having an accuracy, sensitivity, specificity, and F1-score of 99.33%, 99.09%, 99.52%, and 99.24%, respectively. These experimental results suggest that our strategy performs better than previously published approaches.
引用
收藏
页码:3127 / 3142
页数:16
相关论文
共 50 条
  • [1] Deep Learning-Based COVID-19 Detection Using Lung Parenchyma CT Scans
    Kaya, Zeynep
    Kurt, Zuhal
    Koca, Nizameddin
    Cicek, Sumeyye
    Isik, Sahin
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 261 - 275
  • [2] Deep learning-based COVID-19 detection system using pulmonary CT scans
    Nair, Rajit
    Alhudhaif, Adi
    Koundal, Deepika
    Doewes, Rumi Iqbal
    Sharma, Preeti
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (29) : 2716 - 2727
  • [4] Deep learning for diagnosis of COVID-19 using 3D CT scans
    Serte, Sertan
    Demirel, Hasan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [5] A deep learning-based application for COVID-19 diagnosis on CT: The Imaging COVID-19 AI initiative
    Topff, Laurens
    Sanchez-Garcia, Jose
    Lopez-Gonzalez, Rafael
    Pastor, Ana Jimenez J.
    Visser, Jacob J.
    Huisman, Merel
    Guiot, Julien
    Beets-Tan, Regina G. H.
    Alberich-Bayarri, Angel
    Fuster-Matanzo, Almudena R.
    Ranschaert, Erik R.
    PLOS ONE, 2023, 18 (05):
  • [6] Classification of Positive COVID-19 CT Scans Using Deep Learning
    Khan, Muhammad Attique
    Hussain, Nazar
    Majid, Abdul
    Alhaisoni, Majed
    Bukhari, Syed Ahmad Chan
    Kadry, Seifedine
    Nam, Yunyoung
    Zhang, Yu-Dong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (03): : 2923 - 2938
  • [7] A Deep Learning-Based Diagnosis System for COVID-19 Detection and Pneumonia Screening Using CT Imaging
    Mahmoudi, Ramzi
    Benameur, Narjes
    Mabrouk, Rania
    Mohammed, Mazin Abed
    Garcia-Zapirain, Begonya
    Bedoui, Mohamed Hedi
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [8] Machine Learning-Based COVID-19 Classification Using E-Adopted CT Scans
    Palanivinayagam, Ashokkumar
    Kumar, V. Vinoth
    Mahesh, T. R.
    Singh, Krishna Kant
    Singh, Akansha
    INTERNATIONAL JOURNAL OF E-ADOPTION, 2022, 14 (03) : 1 - 15
  • [9] A deep learning-based approach for predicting COVID-19 diagnosis
    Munshi, Raafat M.
    Khayyat, Mashael M.
    Ben Slama, Sami
    Khayyat, Manal Mahmoud
    HELIYON, 2024, 10 (07)
  • [10] Residual Attention Deep SVDD for COVID-19 Diagnosis Using CT Scans
    Alhadad, Akram Ali
    Tarawneh, Omar
    Mostafa, Reham R.
    El-Bakry, Hazem M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3333 - 3350