Solution composition dependent Soret coefficient using commercial MicroScale Thermophoresis instrument

被引:0
|
作者
Pulyala, Praneetha [1 ]
Jing, Meng [2 ]
Gao, Wei [2 ]
Cheng, Xuanhong [1 ,3 ]
机构
[1] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[2] Dow Chem Co USA, Analyt Sci, Core R&D, 400 Arcola Rd, Collegeville, PA 19426 USA
[3] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
关键词
PARTICLE THERMOPHORESIS; THERMAL-DIFFUSION; LIQUID-MIXTURES; THERMODIFFUSION; COLLOIDS; SPHERES;
D O I
10.1039/d3ra00154g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal diffusion of particles in dilute aqueous suspensions is driven by the interactions between the dispersing medium and the particle, which are largely influenced by the properties of the medium. Using a commercial instrument to generate thermophoresis, we developed a method to quantify the migration of colloids in a temperature gradient and further studied how it varies based on the composition and pH of the dispersing medium and with an anionic surfactant, at different salt concentrations. Thermophoretic migration of aqueous suspensions of carboxylate-modified polystyrene particles with different compositions is measured as MicroScale Thermophoresis (MST) traces and a mathematical model is developed to extract the Soret coefficient (S-T). Soret coefficient measurements obtained using the developed method are in-line with previous theories and scientific findings from other literature, indicating a dependence of the S-T on the Debye length and surface charge density of the suspended particles, both of which are controlled by the composition of the dispersing medium. The thermophobic/thermophilic behavior of particles is also found to be strongly influenced by the thermoelectric effect of the buffer ions. In this paper, a new analytical model is introduced and applied to complex systems to understand their thermophoretic behavior as a function of solvent properties.
引用
收藏
页码:15901 / 15909
页数:9
相关论文
共 5 条