Strong Convergence Theorem Obtained by a Generalized Projections Method for Solving an Equilibrium Problem and Fixed Point Problems

被引:1
|
作者
Ghadampour, Mostafa [1 ]
Soori, Ebrahim [2 ]
Agarwal, Ravi P. [3 ]
O'Regan, Donal [4 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Lorestan Univ, Dept Math, Khorramabad, Lorestan, Iran
[3] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX USA
[4] Univ Galway, Sch Math & Stat Sci, Galway, Ireland
关键词
Asymptotical fixed point; Bregman nonexpansive mapping; fixed point problem; Frechet differentiable; variational inequality; PROXIMAL POINT; ALGORITHMS; CONVEXITY;
D O I
10.1080/01630563.2023.2234018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new projection-type algorithm in a reflexive Banach space. Then, using generalized resolvents operators and generalized projections, we prove a strong convergence theorem for computing a common element of the set of fixed points of a Bregman relatively nonexpansive mapping, solutions of an equilibrium problem, fixed points of a resolvent operator and fixed points of an infinite family of Bregman W-mappings.
引用
收藏
页码:1153 / 1174
页数:22
相关论文
共 50 条