L∞-optimal transport for a class of strictly quasiconvex cost functions

被引:1
|
作者
Brizzi, Camilla [1 ]
De Pascale, Luigi [1 ]
Kausamo, Anna [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Optimal transport problem; L-infinity-optimal transport; Wasserstein distances; Monge Kantorovich problem; EXISTENCE;
D O I
10.1016/j.jmaa.2023.127331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the L-infinity-optimal mass transportation problem min(Pi(mu,nu)) gamma - ess sup c(x, y), for a new class of costs c(x, y) for which we introduce a tentative notion of twist condition. In particular we study the conditions under which the infinity-monotone transport plans are induced by a transportation map. We also state a uniqueness result for infinitely cyclically monotone Monge minimizers that corresponds to this class of cost functions. We compare the results to previous works. (c) 2023 Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 50 条