Mathematical modeling analysis of potential attack detection in topology network based on convolutional neural network

被引:0
|
作者
Li, Jie [1 ]
机构
[1] Yantai Vocat Coll, Elect Audiovisual Teaching & Expt Ctr, Yantai 264670, Shandong, Peoples R China
关键词
Topological network; potential attacks; attack detection; convolutional neural network; feature extraction; risk function;
D O I
10.3233/JCM-226586
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New network attack platforms such as personal to personal botnets pose a great threat to cyberspace, but there is no corresponding detection method to detect them. In order to improve the security of topological networks, this research designs a mathematical modeling analysis method for potential attack detection based on convolutional neural networks. This method determines the potential attack risk assessment function through the feature extraction of vulnerable areas in network topology and the probability model of potential attacks, and then detects potential attacks by means of convolutional neural network data modeling. The experimental results show that the false detection rate and missed detection rate of the three methods for potential attacks are lower than 9% and 8% respectively, but the false detection rate and missed detection rate of the method given in the study are the lowest, and can always be kept below 5%. At the same time, the detection time of potential attacks of this method is shorter than that of the other two detection methods. The detection of potential attacks provides a technical guarantee for the safe operation of the network.
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [1] Network Attack Identification and Analysis Based on Graph Convolutional Neural Network
    Wang, Xingyu
    Wenkun
    Zhang, Yingdan
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1443 - 1448
  • [2] Power Analysis Attack Based on Lightweight Convolutional Neural Network
    Li, Xiang
    Yang, Ning
    Chen, Aidong
    Liu, Weifeng
    Liu, Xiaoxiao
    Huang, Na
    FRONTIERS IN CYBER SECURITY, FCS 2022, 2022, 1726 : 105 - 118
  • [3] Recurrent Neural Network and Convolutional Neural Network for Detection of Denial of Service Attack in Microservices
    Lee, Wonjun
    Choe, Yung Ryn
    Ghosh, Rajat Subhra
    22ND IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA 2023, 2023, : 1451 - 1456
  • [4] Network Attack Detection Based on Neural Network LSTM
    Sun, Zichao
    Lyu, Peilin
    2019 2ND INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC AND ENGINEERING TECHNOLOGY (MEET 2019), 2019, : 1 - 6
  • [5] Convolutional neural network based evil twin attack detection in WiFi networks
    Tian, Yinghua
    Wang, Sheng
    Zhang, Long
    2020 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE COMMUNICATION AND NETWORK SECURITY (CSCNS2020), 2021, 336
  • [6] Industrial Anomaly Detection and Attack Classification Method Based on Convolutional Neural Network
    Lai, Yingxu
    Zhang, Jingwen
    Liu, Zenghui
    SECURITY AND COMMUNICATION NETWORKS, 2019, 2019
  • [7] Mathematical Variable Detection based on Convolutional Neural Network and Support Vector Machine
    Bui Hai Phong
    Thang Manh Hoang
    Thi-Lan Le
    2019 INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION (MAPR), 2019,
  • [8] Distribution Network Topology Identification Based on Attention Mechanism and Convolutional Neural Network
    Yang X.
    Jiang J.
    Liu F.
    Tian Y.
    Li F.
    Wu Y.
    Dianwang Jishu/Power System Technology, 2022, 46 (05): : 1672 - 1682
  • [9] A Network Intrusion Detection Model Based on Convolutional Neural Network
    Tao, Wenwei
    Zhang, Wenzhe
    Hu, Chao
    Hu, Chaohui
    SECURITY WITH INTELLIGENT COMPUTING AND BIG-DATA SERVICES, 2020, 895 : 771 - 783
  • [10] A network intrusion detection system based on convolutional neural network
    Wang, Hui
    Cao, Zijian
    Hong, Bo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (06) : 7623 - 7637