Effect of Nb Addition on the Corrosion and Wear Resistance of Laser Clad AlCr2FeCoNi High-Entropy Alloy Coatings

被引:5
|
作者
Ji, Xiulin [1 ]
Guan, Kunpeng [1 ]
Bao, Yayun [2 ]
Mao, Zhongfa [1 ]
Wang, Fengtao [1 ]
Dai, Houfu [1 ]
机构
[1] Shantou Univ, Dept Mech Engn, Shantou 515063, Peoples R China
[2] Bomag Changzhou Construct Machinery Co Ltd, Changzhou 213125, Peoples R China
关键词
wear resistance; laser cladding; microstructure; high-entropy alloy; corrosion; micro-alloying; MECHANICAL-BEHAVIOR; MICROSTRUCTURE; EVOLUTION; STRATEGY; TI;
D O I
10.3390/lubricants12010005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Laser clad AlCr2FeCoNiNbx (x = 0, 0.5, 1.0, 1.5, 2.0, with x values in molar ratio) high-entropy alloy (HEA) coatings were fabricated on Q345 carbon steel. This study delves into the impact of Nb incorporation on the reciprocating sliding wear resistance of these laser clad coatings against a phi 6 mm silicon nitride ball. The microstructure of the as-clad AlCr2FeCoNiNbx coatings transformed from a single Face-Centered Cubic (FCC) solid solution (when x = 0) to the hypoeutectic state (when x = 0.5) and progressed to the hypereutectic state (when x >= 1.0). This evolution was marked by an increase in the Laves phase and a decrease in FCC. Consequently, the HEA coatings exhibited a gradually increasing Vickers hardness, reaching a peak at HV 820. Despite a decline in corrosion resistance, there was a notable enhancement in wear resistance, and the friction of the HEA coating could be reduced by Nb addition. The phase evolution induced by Nb addition led to a shift in the predominant wear mechanism from delamination wear to abrasive wear. The wear rate of Nb0.5 was impressively low, at 6.2 x 10-6 mm N-1 m-1 when reciprocating sliding under 20 N in air. In comparison to Nb0, Nb0.5 showcased 3.6, 7.2, and 6.5 times higher wear resistance at 5 N, 10 N, and 20 N, respectively. Under all applied loads, Nb1.5 has the lowest wear rate among all HEA coatings. This substantiates that the subtle introduction of Laves phase-forming elements to modulate hardness and oxidation ability proves to be an effective strategy for improving the wear resistance of HEA coatings.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Erosion wear resistance of laser cladding AlCr2FeCoNiNbx high-entropy alloy coatings
    Ji, X. L.
    Bao, Y. Y.
    Zhao, J. H.
    Gu, P.
    PROCEEDINGS OF ASIA INTERNATIONAL CONFERENCE ON TRIBOLOGY 2018 (ASIATRIB 2018), 2018, : 3 - 5
  • [2] Study on the microstructure, hardness and corrosion resistance of laser clad AlCoCrFeNiCu High-Entropy alloy coatings
    Wang, Pengwei
    Liu, Yanhou
    Zhang, Zhihui
    Guo, Fanming
    Han, Jinguo
    Ma, Juan
    Zhang, Guiguan
    Zhao, Xianrui
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2025, 77 (04) : 573 - 581
  • [3] On the enhanced wear resistance of laser-clad CoCrCuFeNiTix high-entropy alloy coatings at elevated temperature
    Huang, Yubin
    Hu, Yongle
    Zhang, Mingjun
    Mao, Cong
    Tong, Yonggang
    Zhang, Jian
    Li, Kangwei
    Wang, Kaiming
    TRIBOLOGY INTERNATIONAL, 2022, 174
  • [4] Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding
    Li, Yanzhou
    Shi, Yan
    OPTICS AND LASER TECHNOLOGY, 2021, 134 (134):
  • [5] Microstructure and Wear Resistance of Laser Clad CoCrFeNiTiNbBx High Entropy Alloy Coatings
    Lin Ding
    Hongxin Wang
    Journal of Thermal Spray Technology, 2021, 30 : 2187 - 2196
  • [6] Microstructure and Wear Resistance of Laser Clad CoCrFeNiTiNbBx High Entropy Alloy Coatings
    Ding, Lin
    Wang, Hongxin
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2021, 30 (08) : 2187 - 2196
  • [7] Wear and Corrosion Resistance Analysis of FeCoNiTiAlx High-Entropy Alloy Coatings Prepared by Laser Cladding
    Sun, Zhaolei
    Zhang, Mingyuan
    Wang, Gaoqi
    Yang, Xuefeng
    Wang, Shouren
    COATINGS, 2021, 11 (02) : 1 - 15
  • [8] Effect of Heat Treatment on Microstructure and Wear Behavior of Laser Clad FeCoCrMoNi High-Entropy Alloy Coatings
    Ma, Mingtao
    Nie, Sainan
    Yu, Huishu
    Huang, Guoxuan
    Wang, Xin
    Zhang, Nannan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 34 (6) : 5316 - 5326
  • [9] Review on wear resistance of laser cladding high-entropy alloy coatings
    Xiang, Dingding
    Liu, Yusheng
    Yu, Tianbiao
    Wang, Di
    Leng, Xiaoxin
    Wang, Kaiming
    Liu, Lin
    Pan, Jie
    Yao, Sun
    Chen, Zibin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 911 - 934
  • [10] Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding
    Zhao X.
    Cui H.
    Jiang D.
    Song X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6311 - 6323