Prediction of the ultimate axial load of circular concrete-filled stainless steel tubular columns using machine learning approaches

被引:11
|
作者
Tran, Viet-Linh [1 ]
Ahmed, Mizan [2 ,4 ]
Gohery, Scott [3 ]
机构
[1] Vinh Univ, Dept Civil Engn, Vinh, Vietnam
[2] Curtin Univ, Sch Civil & Mech Engn, Bentley, WA, Australia
[3] Univ Melbourne, Dept Mech Engn, Parkville, Vic, Australia
[4] Curtin Univ, Sch Civil & Mech Engn, Kent St, Bentley, WA 6102, Australia
关键词
axial loading; concrete-filled steel tube; machine learning; stainless steel; ultimate axial load; MEMBERS EXPERIMENTAL DATABASE; TUBE STUB COLUMNS; NONLINEAR-ANALYSIS; NUMERICAL-ANALYSIS; BEHAVIOR; STRENGTH; DESIGN; CAPACITY; SEAWATER; OPTIMIZATION;
D O I
10.1002/suco.202200877
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the accuracy of the existing empirical design models and different machine learning (ML) models, known as Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Adaptive Boosting (AdaBoost), Gradient Boosting Regression Tree (GBRT), and Extreme Gradient Boosting (XGBoost) in predicting the ultimate axial load of circular concrete-filled stainless steel tubular (CFSST) columns under axial loading. A test database encompassing the test results of 142 CFSST columns is used to validate the accuracy of the existing empirical design and different ML models. It was demonstrated that all the ML models can provide a better estimation of the ultimate axial load than the existing empirical design models do, in which XGBoost can provide the best estimation of the ultimate axial load of CFSST columns. Finally, a simple equation is proposed based on the XGBoost model for the practical design of CFSST columns.
引用
收藏
页码:3908 / 3932
页数:25
相关论文
共 50 条
  • [1] Study on preloading reduction of ultimate load of circular concrete-filled steel tubular columns
    Huang, Fuyun
    Yu, Xinmeng
    Chen, Baochun
    Li, Jianzhong
    THIN-WALLED STRUCTURES, 2016, 98 : 454 - 464
  • [2] Axial load behaviour of concrete-filled steel tubular columns
    De Nardin, S.
    El Debs, A. L. H. C.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2007, 160 (01) : 13 - 22
  • [3] Practical Hybrid Machine Learning Approach for Estimation of Ultimate Load of Elliptical Concrete-Filled Steel Tubular Columns under Axial Loading
    Le, Tien-Thinh
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020
  • [4] Axial compressive behaviour of circular steel reinforced concrete-filled stainless steel tubular stub columns
    Wang Z.
    Ke C.
    Li Y.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2024, 45 (02): : 162 - 174
  • [5] Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques
    Le, Tien-Thinh
    Asteris, Panagiotis G.
    Lemonis, Minas E.
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 4) : 3283 - 3316
  • [6] Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques
    Tien-Thinh Le
    Panagiotis G. Asteris
    Minas E. Lemonis
    Engineering with Computers, 2022, 38 : 3283 - 3316
  • [7] Flexural buckling of circular concrete-filled stainless steel tubular columns
    Hassanein, M. F.
    Shao, Yong-Bo
    Elchalakani, M.
    El Hadidy, A. M.
    MARINE STRUCTURES, 2020, 71
  • [8] Machine learning assisted axial strength prediction models for concrete filled stainless steel tubular columns
    Roy, Deeptarka
    Das, Debarshi
    Islam, Kamrul
    Billah, A. H. M. Muntasir
    STRUCTURES, 2025, 73
  • [9] Ultimate bearing capacity of concrete-filled circular steel tubular short columns under axial compression
    Liang, Ben-Liang
    Liu, Jian-Xin
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2010, 44 (06): : 749 - 754
  • [10] Axial compressive behavior of circular steel-reinforced concrete-filled stainless steel tubular stub columns
    Liu, Hongbo
    Wang, Kaibing
    Sun, Jing
    Qiao, Qiyun
    Wei, Lubin
    Ye, Xiaoxu
    Yang, Aoqi
    Cao, Wanlin
    STRUCTURES, 2025, 75