A Novel Tensor-Based Hyperspectral Image Restoration Method With Low-Rank Modeling in Gradient Domains

被引:1
|
作者
Liu, Pengfei [1 ,2 ]
Liu, Lanlan [1 ,2 ]
Xiao, Liang [3 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[2] Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[4] Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Tensors; Image restoration; TV; Discrete Fourier transforms; Sparse matrices; Noise reduction; Gaussian noise; Hyperspectral image restoration; low-rank priors; spectral and spatial gradient domain; tensor nuclear norm (TNN); RECOVERY; SPARSE;
D O I
10.1109/JSTARS.2022.3228942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The hyperspectral image (HSI) is easily contaminated by various kinds of mixed noise (such as Gaussian noise, impulse noise, stripes, and deadlines) during the process of data acquisition and conversion, which significantly affect the quality and applications of HSI. As an important and effective scheme for the quality improvement of HSI, the HSI restoration problem aims to recover a clean HSI from the noisy HSI with mixed noise. Thus, based on the tensor modeling of HSI, we propose a novel tensor-based HSI restoration model with low-rank modeling in gradient domains in a unified tensor representation framework in this article. First, for the spectral low-rank modeling of HSI in spectral gradient domain, we particularly exploit the low-rank property of spectral gradient, and propose the spectral gradient-based weighted nuclear norm low-rank prior term. Second, for the spatial-mode low-rank modeling of HSI in spatial gradient domain, we particularly exploit the low-rank property of spatial gradient tensors via the discrete Fourier transform, and propose the spatial gradient-based tensor nuclear norm low-rank prior term. Then, we use the alternative direction method of multipliers to solve the proposed model. Finally, the restoration results on both the simulated and real HSI datasets demonstrate that the proposed method is superior to many state-of-the-art methods in the aspects of visual and quantitative comparisons.
引用
收藏
页码:581 / 597
页数:17
相关论文
共 50 条
  • [1] Hyperspectral Image Restoration Using Low-Rank Tensor Recovery
    Fan, Haiyan
    Chen, Yunjin
    Guo, Yulan
    Zhang, Hongyan
    Kuang, Gangyao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4589 - 4604
  • [2] Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration
    Chang, Yi
    Yan, Luxin
    Zhao, Xi-Le
    Fang, Houzhang
    Zhang, Zhijun
    Zhong, Sheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (11) : 4558 - 4572
  • [3] Tensor-Based Low-Rank and Sparse Prior Information Constraints for Hyperspectral Image Denoising
    Wang, Guxi
    Han, Hongwei
    Carranza, Emmanuel John M.
    Guo, Si
    Guo, Ke
    Xiao, Keyan
    IEEE ACCESS, 2020, 8 : 102935 - 102946
  • [4] Multigraph-Based Low-Rank Tensor Approximation for Hyperspectral Image Restoration
    Liu, Na
    Li, Wei
    Tao, Ran
    Du, Qian
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Multimodal Low-Rank Tensor Subspace Learning for Hyperspectral Image Restoration
    Lv, Junrui
    Luo, Xuegang
    Wang, Juan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [6] A novel non-convex low-rank tensor approximation model for hyperspectral image restoration
    Lin, Jie
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ma, Tian-Hui
    Jiang, Tai-Xiang
    Zheng, Yu-Bang
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408
  • [7] A survey on hyperspectral image restoration: from the view of low-rank tensor approximation
    Liu, Na
    Li, Wei
    Wang, Yinjian
    Tao, Ran
    Du, Qian
    Chanussot, Jocelyn
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (04)
  • [8] A survey on hyperspectral image restoration: from the view of low-rank tensor approximation
    Na Liu
    Wei Li
    Yinjian Wang
    Ran Tao
    Qian Du
    Jocelyn Chanussot
    Science China Information Sciences, 2023, 66
  • [9] Combined Deep Priors With Low-Rank Tensor Factorization for Hyperspectral Image Restoration
    Zhang, Qiang
    Dong, Yushuai
    Yuan, Qiangqiang
    Song, Meiping
    Yu, Haoyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [10] Combined Deep Priors With Low-Rank Tensor Factorization for Hyperspectral Image Restoration
    Zhang, Qiang
    Dong, Yushuai
    Yuan, Qiangqiang
    Song, Meiping
    Yu, Haoyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20