Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups

被引:0
|
作者
Li, B. [1 ]
Revin, D. O. [2 ,3 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
[2] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620108, Russia
基金
中国国家自然科学基金;
关键词
complete class of groups; relatively maximal subgroup; pronormal subgroup; finite simple group;
D O I
10.1134/S0081543823060135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using R. Wilson's recent results, we prove the existence of triples (X, G, H) such that X is a complete (i.e., closed under taking subgroups, homomorphic images, and extensions) class of finite groups, G is a finite simple group, and H is its X-maximal subgroup nonpronormal in G. This disproves a conjecture stated earlier by the second author and W. Guo.
引用
收藏
页码:S155 / S159
页数:5
相关论文
共 50 条
  • [1] Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups
    B. Li
    D. O. Revin
    Proceedings of the Steklov Institute of Mathematics, 2023, 323 : S155 - S159
  • [2] Examples of nonpronormal relatively maximal subgroups in finite simple groups.
    Li, B.
    Revin, D. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2023, 29 (04): : 140 - 145
  • [3] An Example of a Relatively Maximal Nonpronormal Subgroup of Odd Order in a Finite Simple Group
    Zhang, X.
    Su, L.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (03) : 644 - 647
  • [4] Nonpronormal subgroups of odd index in finite simple linear and unitary groups
    Guo, W.
    Maslova, N., V
    Revin, D. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (01): : 70 - 79
  • [5] Nonpronormal Subgroups of Odd Index in Finite Simple Linear and Unitary Groups
    Guo, Wenbin
    Maslova, N. V.
    Revin, D. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S114 - S122
  • [6] FINITE GROUPS WITH PRESCRIBED Φ-SIMPLE MAXIMAL SUBGROUPS
    Bazhanova, E. N.
    Vedernikov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) : 981 - 993
  • [7] FINITE GROUPS WITH SOLVABLE OR Φ-SIMPLE MAXIMAL SUBGROUPS
    Bazhanova, E. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) : 611 - 619
  • [8] Finite simple groups with complemented maximal subgroups
    Levchuk, V. M.
    Likharev, A. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (04) : 659 - 668
  • [9] Finite simple groups with complemented maximal subgroups
    V. M. Levchuk
    A. G. Likharev
    Siberian Mathematical Journal, 2006, 47 : 659 - 668
  • [10] Maximal orders of Abelian subgroups in finite simple groups
    Vdovin E.P.
    Algebra and Logic, 1999, 38 (2) : 67 - 83