An Automatic Grading System for Neonatal Endotracheal Intubation with Multi-Task Convolutional Neural Network

被引:0
|
作者
Meng, Yan [1 ]
Hahn, James K. [1 ]
机构
[1] George Washington Univ, Dept Comp Sci, Washington, DC 20052 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1109/BHI58575.2023.10313510
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neonatal endotracheal intubation (ETI) is an intricate medical procedure that poses considerable challenges, demanding comprehensive training to effectively address potential complications in clinical practice. However, due to limited access to clinical opportunities, ETI training relies heavily on physical manikins to develop a certain level of competence before clinical exposure. Nonetheless, traditional training methods prove ineffective due to scarcity of expert instructors and the absence of internal situational awareness within the manikins, preventing thorough performance assessment for both trainees and instructors. To address this gap, there is a need to develop an automatic grading system that can assist trainees in performance assessment. In this paper, we proposed a multi-task Convolutional Neural Network (MTCNN) based model for assessing ETI proficiency, specifically targeting key performance features recommended by expert instructors. The model comprises three modules: an ETI simulation module that captures the ETI procedures performed on a standard neonatal task trainer manikin, an automatic grading module that extracts and grades the identified key performance features, and a data visualization module that presents the assessment results in a user-friendly manner. The experimental results demonstrated that the proposed automatic grading system achieved an average classification accuracy of 93.6%. This study established the successful integration of intuitive observed features with latent features derived from multivariate time series (MTS) data, coupled with multi-task deep learning techniques, for the automatic assessment of ETI performance.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Automated Assessment System for Neonatal Endotracheal Intubation Using Dilated Convolutional Neural Network
    Zhao, Shang
    Xiao, Xiao
    Zhang, Xiaoke
    Li, Wei
    Meng, Yan
    Soghier, Lamia
    Hahn, James K.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5455 - 5458
  • [2] Multi-task convolutional neural network system for license plate recognition
    Kim, Hong-Hyun
    Park, Je-Kang
    Oh, Joo-Hee
    Kang, Dong-Joong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (06) : 2942 - 2949
  • [3] Multi-task convolutional neural network system for license plate recognition
    Hong-Hyun Kim
    Je-Kang Park
    Joo-Hee Oh
    Dong-Joong Kang
    International Journal of Control, Automation and Systems, 2017, 15 : 2942 - 2949
  • [4] Dynamic Multi-Task Learning with Convolutional Neural Network
    Fang, Yuchun
    Ma, Zhengyan
    Zhang, Zhaoxiang
    Zhang, Xu-Yao
    Bai, Xiang
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1668 - 1674
  • [5] A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern
    Shuo Meng
    Ruru Pan
    Weidong Gao
    Jian Zhou
    Jingan Wang
    Wentao He
    Journal of Intelligent Manufacturing, 2021, 32 : 1147 - 1161
  • [6] A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern
    Meng, Shuo
    Pan, Ruru
    Gao, Weidong
    Zhou, Jian
    Wang, Jingan
    He, Wentao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (04) : 1147 - 1161
  • [7] Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading
    Zhou, Kang
    Gu, Zaiwang
    Liu, Wen
    Luo, Weixin
    Cheng, Jun
    Gao, Shenghua
    Liu, Jiang
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2724 - 2727
  • [8] Multi-Task Convolutional Neural Network for Image Aesthetic Assessment
    Soydaner, Derya
    Wagemans, Johan
    IEEE ACCESS, 2024, 12 : 4716 - 4729
  • [9] Multi-Task Convolutional Neural Network for Car Attribute Recognition
    Tian, Yunfei
    Zhang, Dongping
    Jing, Changxing
    Chu, Donghui
    Yang, Li
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 459 - 463
  • [10] Multi-task deep convolutional neural network for cancer diagnosis
    Liao, Qing
    Ding, Ye
    Jiang, Zoe L.
    Wang, Xuan
    Zhang, Chunkai
    Zhang, Qian
    NEUROCOMPUTING, 2019, 348 : 66 - 73