A Monte Carlo simulation framework for reject inference

被引:5
|
作者
Anderson, Billie [1 ]
Newman, Mark A. [2 ]
Grim, Philip A., II [2 ]
Hardin, J. Michael [3 ]
机构
[1] UMKC, Kansas City, MO 64110 USA
[2] Harrisburg Univ Sci & Technol, Harrisburg, PA USA
[3] Samford Univ, Birmingham, AL USA
关键词
Credit scoring; reject inference; Monte Carlo simulation; SUPPORT VECTOR MACHINES; LIKELIHOOD-ESTIMATION; CREDIT; PERFORMANCE; ENSEMBLE;
D O I
10.1080/01605682.2022.2057819
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Credit scoring is the process of determining whether applicants should be granted a financial loan. When a financial institution decides to create a credit scoring model for all applicants, the institution only has the known good/bad loan outcomes for accepted applicants. This causes inherent bias in the model We address a gap in the reject inference literature by developing a methodology to simulate rejected applicants. A methodology to illustrate how to simulate rejected applicants must be developed so that the reject inference techniques can be studied and appropriate reject inference techniques can be selected. This study uses a peer-to-peer financial loan information from accepted and rejected financial loan applicants to perform Monte Carlo simulation of rejected applicants. Using simulated data, the researchers compare the performance of three widely used reject inference techniques.
引用
收藏
页码:1133 / 1149
页数:17
相关论文
共 50 条
  • [1] PHAISTOS: A framework for Markov chain Monte Carlo simulation and inference of protein structure
    Boomsma, Wouter
    Frellsen, Jes
    Harder, Tim
    Bottaro, Sandro
    Johansson, Kristoffer E.
    Tian, Pengfei
    Stovgaard, Kasper
    Andreetta, Christian
    Olsson, Simon
    Valentin, Jan B.
    Antonov, Lubomir D.
    Christensen, Anders S.
    Borg, Mikael
    Jensen, Jan H.
    Lindorff-Larsen, Kresten
    Ferkinghoff-Borg, Jesper
    Hamelryck, Thomas
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (19) : 1697 - 1705
  • [2] MONTE CARLO SIMULATION FRAMEWORK FOR TMT
    Vogiatzis, Konstantinos
    Angeli, George Z.
    MODELLING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY III, 2008, 7017 : U252 - U260
  • [3] Backward Simulation Methods for Monte Carlo Statistical Inference
    Lindsten, Fredrik
    Schon, Thomas B.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2013, 6 (01): : 1 - 143
  • [4] Faunus - a flexible framework for Monte Carlo simulation
    Stenqvist, Bjoern
    Thuresson, Axel
    Kurut, Anil
    Vacha, Robert
    Lund, Mikael
    MOLECULAR SIMULATION, 2013, 39 (14-15) : 1205 - 1211
  • [5] Understanding framework flexibility by Monte Carlo simulation
    Ghysels, An
    Van Speybroeck, Veronique
    Waroquier, Michel
    Smit, Berend
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [6] Monte Carlo simulation and statistical inference of morphologically constrained GRFs
    Sivakumar, K
    Goutsias, J
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, 1998, 12 : 267 - 274
  • [7] A Monte Carlo Framework for Incremental Improvement of Simulation Fidelity
    Lyons, D. M.
    Finocchiaro, J.
    Novitzky, M.
    Korpela, C.
    INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 599 - 616
  • [8] An exact framework for uncertainty quantification in Monte Carlo simulation
    Saracco, P.
    Pia, M. G.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [9] A sequential Monte Carlo framework for haplotype inference in CNV/SNP genotype data
    Iliadis, Alexandros
    Anastassiou, Dimitris
    Wang, Xiaodong
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2014, (01)
  • [10] SAGE: a Monte Carlo simulation framework for experiments with germanium detectors
    She, Z.
    Ma, H.
    Zeng, W.
    Dai, W.
    Geng, X.
    Normahmedov, O.
    Yang, J.
    Zeng, Z.
    Yue, Q.
    Cheng, J.
    Li, J.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (09)