Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials

被引:29
|
作者
Schmidt, Jonathan [1 ]
Hoffmann, Noah [1 ]
Wang, Hai-Chen [1 ]
Borlido, Pedro [2 ]
Carrico, Pedro J. M. A. [2 ]
Cerqueira, Tiago F. T. [2 ]
Botti, Silvana [3 ]
Marques, Miguel A. L. [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
[2] Univ Coimbra, Dept Phys, CFisUC, Rua Larga, P-3004516 Coimbra, Portugal
[3] Friedrich Schiller Univ Jena, Inst Festkorpertheorie & Opt, Max Wien Pl 1, D-07743 Jena, Germany
关键词
high-throughput density functional theory calculations; machine learning material science; material discovery; superconductivity; superhard materials; THERMODYNAMIC STABILITY; TRANSITION-TEMPERATURE; CRYSTAL; PSEUDOPOTENTIALS; SEMICONDUCTORS; TABLE; X=CL; BR;
D O I
10.1002/adma.202210788
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than approximate to 150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom(-1). The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Zero-temperature phase diagram of Yukawa bosons
    Osychenko, O. N.
    Astrakharchik, G. E.
    Mazzanti, F.
    Boronat, J.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [2] Zero-temperature phase diagram for strongly correlated nanochains
    Luo, Y. (yluo2k@yahoo.com), 1600, American Institute of Physics Inc. (95):
  • [3] Zero-temperature phase diagram for strongly correlated nanochains
    Luo, Y
    Verdozzi, C
    Kioussis, N
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 7198 - 7200
  • [4] Zero-temperature Phase Diagram of Two Dimensional Hubbard Model
    Inaba, K.
    Koga, A.
    Suga, S.
    Kawakami, N.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [5] THEORETICAL ZERO-TEMPERATURE PHASE-DIAGRAM FOR NEPTUNIUM METAL
    SODERLIND, P
    JOHANSSON, B
    ERIKSSON, O
    PHYSICAL REVIEW B, 1995, 52 (03): : 1631 - 1639
  • [6] Zero-temperature phase diagram of binary boson-fermion mixtures
    Viverit, L.
    Pethick, C.J.
    Smith, H.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (05): : 536051 - 536058
  • [7] Zero-temperature phase diagram of dissipative random Ising ferromagnetic chains
    Cugliandolo, L. F.
    Lozano, G. S.
    Lozza, H. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5219 - 5223
  • [8] Zero-temperature phase diagram of D2 physisorbed on graphane
    Carbonell-Coronado, C.
    De Soto, F.
    Cazorla, C.
    Boronat, J.
    Gordillo, M. C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (44)
  • [9] Zero-temperature phase diagram of binary boson-fermion mixtures
    Viverit, L
    Pethick, CJ
    Smith, H
    PHYSICAL REVIEW A, 2000, 61 (05): : 8
  • [10] The zero-temperature phase diagram of soft-repulsive particle fluids
    Prestipino, Santi
    Saija, Franz
    Malescio, Gianpietro
    SOFT MATTER, 2009, 5 (14) : 2795 - 2803