Quantifying the diversity of multiple time series with an ordinal symbolic approach

被引:2
|
作者
Zunino, Luciano [1 ,2 ]
Soriano, Miguel C. [3 ]
机构
[1] UNLP, CONICET La Plata, Ctr Invest Opt, CIC, CC 3, RA-1897 La Plata, Argentina
[2] Univ Nacl La Plata, Fac Ingn, Dept Ciencias Basicas, RA-1900 La Plata, Argentina
[3] Campus Univ Illes Balears, Inst Fis Interdisciplinar & Sistemas Complejos, CSIC UIB, E-07122 Palma De Mallorca, Spain
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevE.108.065302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The main motivation of this paper is to introduce the ordinal diversity, a symbolic tool able to quantify the degree of diversity of multiple time series. Analytical, numerical, and experimental analyses illustrate the utility of this measure to quantify how diverse, from an ordinal perspective, a set of many time series is. We have shown that ordinal diversity is able to characterize dynamical richness and dynamical transitions in stochastic processes and deterministic systems, including chaotic regimes. This ordinal tool also serves to identify optimal operating conditions in the machine learning approach of reservoir computing. These results allow us to envision potential applications for the handling and characterization of large amounts of data, paving the way for addressing some of the most pressing issues facing the current big data paradigm.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dimension reduction and visualization of multiple time series data: a symbolic data analysis approach
    Emily Chia-Yu Su
    Han-Ming Wu
    Computational Statistics, 2024, 39 : 1937 - 1969
  • [2] Dimension reduction and visualization of multiple time series data: a symbolic data analysis approach
    Su, Emily Chia-Yu
    Wu, Han-Ming
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 1937 - 1969
  • [3] A Dictionary-Based Approach to Time Series Ordinal Classification
    Ayllon-Gavilan, Rafael
    Guijo-Rubio, David
    Antonio Gutierrez, Pedro
    Hervas-Martinez, Cesar
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 541 - 552
  • [4] Damage localisation using symbolic time series approach
    Alamdari, Mehrisadat Makki
    Li, Jianchun
    Samali, Bijan
    Conference Proceedings of the Society for Experimental Mechanics Series, 2014, 4 : 109 - 115
  • [5] A three-stage approach for modeling multiple time series applied to symbolic quartile data
    Reyes, Dailys M. A.
    de Souza, Renata M. C. R.
    de Oliveira, Adriano L., I
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [6] Symbolic dynamic approach for analyzing physiological time series
    Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    Hsi An Chiao Tung Ta Hsueh, 2007, 12 (1479-1482):
  • [7] A symbolic approach to gene expression time series analysis
    Costa, IG
    de Carvalho, FDT
    de Souto, MCP
    VII BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, PROCEEDINGS, 2002, : 25 - 30
  • [8] Extracting ordinal temporal trail clusters in networks using symbolic time-series analysis
    Gullapalli A.
    Carley K.M.
    Social Network Analysis and Mining, 2013, 3 (04) : 1179 - 1194
  • [9] Ordinal analysis of time series
    Keller, K
    Sinn, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) : 114 - 120
  • [10] Ordinal time series analysis
    Bandt, C
    ECOLOGICAL MODELLING, 2005, 182 (3-4) : 229 - 238