An indicator preselection based evolutionary algorithm with auxiliary angle selection for many-objective optimization

被引:13
|
作者
Gu, Qinghua [1 ,2 ]
Zhou, Qing [1 ,2 ]
Wang, Qian [2 ,4 ]
Xiong, Neal N. [1 ,3 ]
机构
[1] Xian Univ Architecture & Technol, Sch Resources Engn, Xian 710055, Shaanxi, Peoples R China
[2] Xian Univ Architecture & Technol, Xian Key Lab Intelligent Ind Percept Calculat & De, Xian 710055, Shaanxi, Peoples R China
[3] Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
[4] Xian Univ Architecture & Technol, Sch Management, Xian 710055, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Many-objective optimization; Evolutionary algorithm; Balancing diversity and convergence; Population pre-selected region strategy; The second auxiliary angle; GENETIC ALGORITHM;
D O I
10.1016/j.ins.2023.118996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many-objective evolutionary algorithms (MaOEAs) have received significant achievements in recent years. Maintaining a balance between convergence and diversity becomes a key challenge for many-objective evolutionary algorithms when the number of optimization objectives increases. To address this issue, we propose a many-objective evolutionary algorithm using the indicator preselection and auxiliary angle selection (PSEA). In PSEA, a unit vector-based indicator is proposed to pre-select the population region for increasing selection pressure and maintaining diversity simultaneously, which is utilized to identify a promising region in the objective space. Due to the poor quality of individuals outside the promising region, these individuals in the current population can be temporarily discarded. Then, to ensure the diversity of the population, a new strategy based on the second auxiliary angle strategy is designed to calculate the neighborhood density. Finally, in the environmental selection, these strategies are employed for selecting individuals with good convergence and diversity from the candidate set one by one to enter the next generation. The experimental results on commonly used benchmark test problems and many-objective traveling salesman problems with objectives varying from 5 to 20 have demonstrated that PSEA outperforms some state-of-the-art approaches.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A many-objective evolutionary algorithm based on indicator selection and adaptive angle estimation
    Wang, Qian
    Gu, Qinghua
    Zhou, Qing
    Xiong, Naixue
    Liu, Di
    INFORMATION SCIENCES, 2025, 691
  • [2] An Evolutionary Algorithm for Many-Objective Optimization Based on Indicator and Vector-Angle Decomposition
    Sun, Wenjing
    Li, Junhua
    IEEE ACCESS, 2020, 8 : 195089 - 195101
  • [3] Evolutionary many-objective optimization algorithm based on angle and clustering
    Xiong, Zhijian
    Yang, Jingming
    Hu, Ziyu
    Zhao, Zhiwei
    Wang, Xiaojing
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2045 - 2062
  • [4] Evolutionary many-objective optimization algorithm based on angle and clustering
    Zhijian Xiong
    Jingming Yang
    Ziyu Hu
    Zhiwei Zhao
    Xiaojing Wang
    Applied Intelligence, 2021, 51 : 2045 - 2062
  • [5] A Many-Objective Evolutionary Algorithm Based on Indicator and Decomposition
    Xia, Yizhang
    Huang, Jianzun
    Li, Xijun
    Liu, Yuan
    Zheng, Jinhua
    Zou, Juan
    MATHEMATICS, 2023, 11 (02)
  • [6] A Multi-indicator based Selection Strategy for Evolutionary Many-objective Optimization
    Wang, Hao
    Sun, Chaoli
    Jin, Yaochu
    Qin, Shufen
    Yu, Haibo
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2042 - 2049
  • [7] Dynamical decomposition and selection based evolutionary algorithm for many-objective optimization
    Bao, Qian
    Wang, Maocai
    Dai, Guangming
    Chen, Xiaoyu
    Song, Zhiming
    APPLIED SOFT COMPUTING, 2023, 141
  • [8] An Evolutionary Many-Objective Optimization Algorithm based on IGD Indicator and Region Decomposition
    Feng, Shuifeng
    Wen, Jiechang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 206 - 210
  • [9] An indicator and adaptive region division based evolutionary algorithm for many-objective optimization
    Zhou, Jiajun
    Yao, Xifan
    Gao, Liang
    Hu, Chengyu
    APPLIED SOFT COMPUTING, 2021, 99
  • [10] An Angle-Based Bi-Objective Evolutionary Algorithm for Many-Objective Optimization
    Yang, Feng
    Wang, Shenwen
    Zhang, Jiaxing
    Gao, Na
    Qu, Jun-Feng
    IEEE ACCESS, 2020, 8 : 194015 - 194026