Quantum Machine Learning Implementations: Proposals and Experiments

被引:5
|
作者
Lamata, Lucas [1 ,2 ]
机构
[1] Univ Seville, Fac Fis, Dept Fis Atom Mol & Nucl, Apartado 1065, Seville 41080, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada 18071, Spain
关键词
implementations of quantum information; quantum artificial intelligence; quantum machine learning; quantum photonics; quantum technologies; superconducting circuits;
D O I
10.1002/qute.202300059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article gives an overview and a perspective of recent theoretical proposals and their experimental implementations in the field of quantum machine learning. Without an aim to being exhaustive, the article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors, and their experimental realizations in the platforms of quantum photonics and superconducting circuits. The field of quantum machine learning can be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society. Therefore, it is necessary to push forward initial quantum implementations of this technology, in noisy intermediate-scale quantum computers, aiming for achieving fruitful calculations in machine learning that are better than with any other current or future computing paradigm.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A hybrid machine learning algorithm for designing quantum experiments
    L. O’Driscoll
    R. Nichols
    P. A. Knott
    Quantum Machine Intelligence, 2019, 1 : 5 - 15
  • [2] A hybrid machine learning algorithm for designing quantum experiments
    O'Driscoll, L.
    Nichols, R.
    Knott, P. A.
    QUANTUM MACHINE INTELLIGENCE, 2019, 1 (1-2) : 5 - 15
  • [3] Experiments quantum homodyne tomography via machine learning
    Tiunov, E. S.
    Tiunova , V. V.
    Ulanov, A. E.
    Lvovsky, A., I
    Fedorov, A. K.
    OPTICA, 2020, 7 (05): : 448 - 454
  • [4] Active learning machine learns to create new quantum experiments
    Melnikov, Alexey A.
    Nautrup, Hendrik Poulsen
    Krenn, Mario
    Dunjko, Vedran
    Tiersch, Markus
    Zeilinger, Anton
    Briegel, Hans J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (06) : 1221 - 1226
  • [5] Machine learning in electronic-quantum-matter imaging experiments
    Zhang, Yi
    Mesaros, A.
    Fujita, K.
    Edkins, S. D.
    Hamidian, M. H.
    Ch'ng, K.
    Eisaki, H.
    Uchida, S.
    Davis, J. C. Seamus
    Khatami, Ehsan
    Kim, Eun-Ah
    NATURE, 2019, 570 (7762) : 484 - +
  • [6] Machine learning in electronic-quantum-matter imaging experiments
    Yi Zhang
    A. Mesaros
    K. Fujita
    S. D. Edkins
    M. H. Hamidian
    K. Ch’ng
    H. Eisaki
    S. Uchida
    J. C. Séamus Davis
    Ehsan Khatami
    Eun-Ah Kim
    Nature, 2019, 570 : 484 - 490
  • [7] QUANTUM ANNEALING LEARNING SEARCH IMPLEMENTATIONS
    Bonomi, Andrea
    De Min, Thomas
    Zardini, Enrico
    Blanzieri, Enrico
    Cavecchia, Valter
    Pastorello, Davide
    QUANTUM INFORMATION & COMPUTATION, 2022, 22 (3-4) : 181 - 208
  • [8] QUANTUM ANNEALING LEARNING SEARCH IMPLEMENTATIONS
    Bonomi A.
    DE MIN T.
    Zardini E.
    Blanzieri E.
    Cavecchia V.
    Pastorello D.
    Quantum Information and Computation, 2022, 22 (3-4): : 181 - 208
  • [9] Photonic Delay Systems as Machine Learning Implementations
    Hermans, Michiel
    Soriano, Miguel C.
    Dambre, Joni
    Bienstman, Peter
    Fischer, Ingo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 2081 - 2097
  • [10] Dreyfus Foundation accepting proposals for machine learning
    Wang, Linda
    CHEMICAL & ENGINEERING NEWS, 2020, 98 (05) : 43 - 43