Multifractal Description of the Agricultural and Meteorological Drought Propagation Process

被引:4
|
作者
Gu, Lailei [1 ,2 ]
Jamshidi, Sajad [3 ]
Zhang, Mingjun [1 ,2 ]
Gu, Xiufen [4 ,5 ]
Wang, Zhilan [1 ,2 ]
机构
[1] Northwest Normal Univ, Coll Geog & Environm Sci, 967 East Rd, Lanzhou 730070, Gansu, Peoples R China
[2] Key Lab Resource Environm & Sustainable Dev Oasis, Lanzhou, Peoples R China
[3] Purdue Univ, Dept Agron, W Lafayette, IN 47906 USA
[4] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[5] Hohai Univ, Natl Key Lab Water Disaster Prevent, Nanjing 210098, Jiangsu, Peoples R China
关键词
Meteorological drought; Agricultural drought; Drought indicators; Multifractal analysis; Main hurst exponent; HYDROLOGICAL DROUGHTS; EVAPORATIVE DEMAND; INDEX;
D O I
10.1007/s11269-024-03830-y
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study uses Multifractal Detrended Fluctuation Analysis to examine the scaling behavior and spatiotemporal variability of drought indicators. We employ two hybrid drought indicators-the GRACE Root Zone Soil Moisture Percentile (SMI) and Evaporative Demand Drought Index (EDDI)-to elucidate agricultural drought characteristics, and we quantify meteorological drought using the Standardized Precipitation Index (SPI). Our investigation was carried out in the United States in the California and Mississippi watersheds, each characterized by distinct agricultural climate conditions and planting systems. The changes in drought indicators exhibit multifractality primarily derived from the long-term memory embedded within the time series. Spatially, the increment sequence of SPI displays pronounced dependence in almost all areas. Specifically, the changes in SPI demonstrate persistence, as the Hurst exponents changed from 0.53 to 0.58 in California, revealing the possibility of a degree of trend continuation (albeit, not very strong) in the future. A regular summary cannot be obtained for Mississippi, since the Hurst exponent ranges from 0.46 to 0.51 for the increment sequence of SPI in that watershed. However, the increment sequences for the agricultural drought indicators exhibit obvious short-term persistence (anti-persistence), indicating that future drought trends may be discontinuous. The variations in the strength of anti-persistence among agricultural drought indicators can be attributed to geographical differences, diverse irrigation strategies, and varying cropping systems. No significant evolution pattern is evident for the scaling structure of drought processes due to minor variations in external controlling factors, such as rainfall and temperature, within the drought process.
引用
收藏
页码:3607 / 3622
页数:16
相关论文
共 50 条
  • [1] Multifractal characterization of meteorological to agricultural drought propagation over India
    Pachore, Akshay Bajirao
    Remesan, Renji
    Kumar, Rohini
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Propagation of Drought: From Meteorological Drought to Agricultural and Hydrological Drought
    Wang, Wen
    Ertsen, Maurits W.
    Svoboda, Mark D.
    Hafeez, Mohsin
    ADVANCES IN METEOROLOGY, 2016, 2016
  • [3] Influence of irrigation and groundwater on the propagation of meteorological drought to agricultural drought
    Li, Fawen
    Zhang, Manjing
    Zhao, Yong
    Jiang, Rengui
    AGRICULTURAL WATER MANAGEMENT, 2023, 277
  • [4] Assessing meteorological and agricultural drought characteristics and drought propagation in Guangdong, China
    Zhang, Ruqing
    Wei, Shangguan
    Liu, Jiajin
    Dong, Wenzong
    Wu, Daoyuan
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 51
  • [5] Drought Dynamics in the Nile River Basin: Meteorological, Agricultural, and Groundwater Drought Propagation
    Nigatu, Zemede M.
    You, Wei
    Melesse, Assefa M.
    REMOTE SENSING, 2024, 16 (05)
  • [6] From meteorological to agricultural drought: Propagation time and probabilistic linkages
    Xu, Zhengguang
    Wu, Zhiyong
    Shao, Quanxi
    He, Hai
    Guo, Xiao
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 46
  • [7] Development and propagation of hydrologic drought from meteorological and agricultural drought in the Mekong River Basin
    Palanisamy, Bakkiyalakshmi
    Narasimhan, Balaji
    Paul, Sabu
    Srinivasan, Raghavan
    Wangpimool, Winai
    Sith, Ratino
    Sayasane, Rattykone
    HYDROLOGICAL PROCESSES, 2023, 37 (07)
  • [8] Mechanisms of meteorological drought propagation to agricultural drought in China: insights from causality chain
    Zhiwen You
    Xunlai Sun
    Huaiwei Sun
    Lu Chen
    Mengge Lu
    Jie Xue
    Xuan Ban
    Baowei Yan
    Ye Tuo
    Hui Qin
    Liping Zhang
    Wenxin Zhang
    npj Natural Hazards, 2 (1):
  • [9] Trigger thresholds and propagation mechanism of meteorological drought to agricultural drought in an inland river basin
    Wang, Lin
    Wei, Wei
    Wang, Lixin
    Chen, Shengnan
    Duan, Weili
    Zhang, Qiang
    Tong, Bing
    Han, Zhiming
    Li, Zhi
    Chen, Liding
    AGRICULTURAL WATER MANAGEMENT, 2025, 311
  • [10] Propagation characteristics and mechanism from meteorological to agricultural drought in various seasons
    Dai, Meng
    Huang, Shengzhi
    Huang, Qiang
    Zheng, Xudong
    Su, Xiaoling
    Leng, Guoyong
    Li, Ziyan
    Guo, Yi
    Fang, Wei
    Liu, Yongjia
    JOURNAL OF HYDROLOGY, 2022, 610